Neutron Embrittlement
   HOME

TheInfoList



OR:

Neutron embrittlement, sometimes more broadly radiation embrittlement, is the embrittlement of various materials due to the action of
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. This is primarily seen in
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s, where the release of high-energy neutrons causes the long-term degradation of the reactor materials. The embrittlement is caused by the microscopic movement of
atoms Atoms are the basic particles of the chemical elements. An atom consists of a nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished from each other ...
that are hit by the neutrons; this same action also gives rise to neutron-induced swelling causing materials to grow in size, and the Wigner effect causing energy buildup in certain materials that can lead to sudden releases of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
. Neutron embrittlement mechanisms include: * Hardening and dislocation pinning due to nanometer features created by irradiation * Generation of lattice defects in collision cascades via the high-energy recoil atoms produced in the process of
neutron scattering Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. Th ...
. * Diffusion of major defects, which leads to higher amounts of solute diffusion, as well as formation of nanoscale defect-solute cluster complexes, solute clusters, and distinct phases.


Embrittlement in Nuclear Reactors

Neutron irradiation embrittlement limits the service life of reactor-pressure vessels (RPV) in nuclear power plants due to the degradation of reactor materials. In order to perform at high efficiency and safely contain coolant water at temperatures around 290°C and pressures of ~7 MPa (for boiling water reactors) to 14 MPa (for pressurized water reactors), the RPV must be heavy-section steel. Due to regulations, RPV failure probabilities must be very low. To achieve sufficient safety, the design of the reactor assumes large cracks and extreme loading conditions. Under such conditions, a probable
failure mode Failure causes are defects in design, process, quality, or part application, which are the underlying cause of a failure or which initiate a process which leads to failure. Where failure depends on the user of the product or process, then human er ...
is rapid, catastrophic
fracture Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress (mechanics), stress. The fracture of a solid usually occurs due to the development of certain displacemen ...
if the vessel steel is brittle. Tough RPV base metals that are typically used are A302B, A533B plates, or A508 forgings; these are quenched and tempered, low-alloy steels with primarily tempered bainitic microstructures. Over the past few decades, RPV embrittlement has been addressed by the use of tougher steels with lower trace impurity contents, the decrease of neutron flux that the vessel is subject to, and the elimination of beltline welds. However, embrittlement remains an issue for older reactors. Pressurized water reactors are more susceptible to embrittlement than boiling water reactors. This is due to PWRs sustaining more neutron impacts. To counteract this, many PWRs have a specific core design that reduces the number of neutrons hitting the vessel wall. Moreover, PWR designs must be especially mindful of embrittlement because of pressurized thermal shock, an accident scenario that occurs when cold water enters a pressurized reactor vessel, introducing large
thermal stress In mechanics and thermodynamics, thermal stress is mechanical stress created by any change in temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, m ...
. This thermal stress may cause fracture if the reactor vessel is sufficiently brittle.


See also

* Radiation damage


References

* * ;Specific Materials degradation embrittlement Scientific terminology {{nuclear-stub