Weak neutral current interactions are one of the ways in which
subatomic particles can interact by means of the
weak force
Weak may refer to:
Songs
* "Weak" (AJR song), 2016
* "Weak" (Melanie C song), 2011
* "Weak" (SWV song), 1993
* "Weak" (Skunk Anansie song), 1995
* "Weak", a song by Seether from '' Seether: 2002-2013''
Television episodes
* "Weak" (''Fear t ...
. These interactions are mediated by the
Z boson. The discovery of weak neutral currents was a significant step toward the unification of
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions o ...
and the weak force into the
electroweak force
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
, and led to the discovery of the
W and Z bosons
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and ...
.
In simple terms
The weak force is best known for its role in nuclear decay. It has very short range but (apart from gravity) is the only force to interact with
neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s. Like other subatomic forces, the weak force is mediated via exchange particles. Perhaps the most well known of the exchange particles for the weak force is the
W particle which is involved in
beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
. W particles have
electric charge
Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respecti ...
– there are both positive and negative W particles – however the Z boson is also an exchange particle for the weak force but does ''not'' have any electrical charge.
Exchange of a Z boson transfers
momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass ...
,
spin, and
energy
In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
, but leaves the interacting particles' quantum numbers unaffected – charge,
flavor,
baryon number
In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as
::B = \frac\left(n_\text - n_\bar\right),
where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
,
lepton number
In particle physics, lepton number (historically also called lepton charge)
is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction.
Lepton number ...
, etc. Because there is no transfer of electrical charge involved, exchange of Z particles is referred to as "neutral" in the phrase "neutral current". However the word "current" here has nothing to do with electricity – it simply refers to the exchange of the Z particle.
The Z boson's neutral current interaction is determined by a derived quantum number called ''
weak charge
In nuclear physics and atomic physics, weak charge refers to the Standard Model weak interaction coupling of a particle to the Z boson. For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and + ...
'', which acts similarly to
weak isospin
In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or . It ...
for interactions with the W bosons.
Definition
The neutral current that gives the interaction its name is that of the interacting particles.
For example, the neutral current contribution to the → elastic
scattering amplitude is
:
where the neutral currents describing the flow of the
neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
and of the electron are given by:
:
where:
[
:
and are the vector and axial vector couplings for ]fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks and ...
. denotes the weak isospin
In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol or , with the third component written as or . It ...
of the fermions, their electric charge and their weak charge
In nuclear physics and atomic physics, weak charge refers to the Standard Model weak interaction coupling of a particle to the Z boson. For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and + ...
. These couplings amount to essentially left chiral for neutrinos and axial for charged leptons.
The Z boson can couple to any Standard Model particle, except gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s and photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
s. However, any interaction between two charged particles that can occur via the exchange of a virtual Z boson can also occur via the exchange of a virtual photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
. Unless the interacting particles have energies on the order of the Z boson mass (91 GeV) or higher, the virtual Z boson exchange has an effect of a tiny correction () to the amplitude of the electromagnetic process.
Particle accelerators with energies necessary to observe neutral current interactions and to measure the mass of Z boson weren't available until 1983.
On the other hand, Z boson interactions involving neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s have distinctive signatures: They provide the only known mechanism for elastic scattering
Elastic scattering is a form of particle scattering in scattering theory, nuclear physics and particle physics. In this process, the kinetic energy of a particle is conserved in the center-of-mass frame, but its direction of propagation is modif ...
of neutrinos in matter; neutrinos are almost as likely to scatter elastically (via Z boson exchange) as inelastically (via W boson exchange), of major experimental significance, in, e.g. , the Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory (SNO) was a neutrino observatory located 2100 m underground in Vale Limited, Vale's Creighton Mine in Greater Sudbury, Sudbury, Ontario, Canada. The detector was designed to detect solar neutrinos through the ...
experiment.
Weak neutral currents were predicted by electroweak theory
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
developed mainly by Abdus Salam
Mohammad Abdus Salam Salam adopted the forename "Mohammad" in 1974 in response to the anti-Ahmadiyya decrees in Pakistan, similarly he grew his beard. (; ; 29 January 192621 November 1996) was a Punjabi Pakistani theoretical physicist and a N ...
, John Clive Ward, Sheldon Glashow and Steven Weinberg
Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic inter ...
, and confirmed shortly thereafter in 1973, in a neutrino experiment in the Gargamelle bubble chamber at CERN.
See also
* Charged current
* Electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The movin ...
* Flavor changing neutral current
* Quantum chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a ty ...
* Sudbury Neutrino Observatory#Neutral current interaction
* Weak charge
In nuclear physics and atomic physics, weak charge refers to the Standard Model weak interaction coupling of a particle to the Z boson. For example, for any given nuclear isotope, the total weak charge is approximately −0.99 per neutron, and + ...
References
External links
*
*
*
*
*
*
*
*
{{DEFAULTSORT:Neutral Current
Electroweak theory