Nanopillars
   HOME

TheInfoList



OR:

Nanopillars is an emerging technology within the field of
nanostructures A nanostructure is a structure of intermediate size between microscopic and molecular structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Ma ...
. Nanopillars are pillar shaped nanostructures approximately 10 nanometers in diameter that can be grouped together in lattice like arrays. They are a type of
metamaterial A metamaterial (from the Greek word μετά ''meta'', meaning "beyond" or "after", and the Latin word ''materia'', meaning "matter" or "material") is a type of material engineered to have a property, typically rarely observed in naturally occu ...
, which means that nanopillars get their attributes from being grouped into artificially designed structures and not their natural properties. Nanopillars set themselves apart from other
nanostructures A nanostructure is a structure of intermediate size between microscopic and molecular structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Ma ...
due to their unique shape. Each nanopillar has a pillar shape at the bottom and a tapered pointy end on top. This shape in combination with nanopillars' ability to be grouped together exhibits many useful properties. Nanopillars have many applications including efficient
solar panel A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct ...
s, high resolution analysis, and
antibacterial An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention ...
surfaces.


Applications


Solar panels

Due to their tapered ends, nanopillars are very efficient at capturing light. Solar collector surfaces coated with nanopillars are three times as efficient as
nanowire file:SnSe@SWCNT.jpg, upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre ( ...
solar cells. Less material is needed to build a
solar cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
out of nanopillars compared to regular semi conductive materials. They also hold up well during the manufacturing process of solar panels. This durability allows manufacturers to use cheaper materials and less expensive methods to produce solar panels. Researchers are looking into putting
dopants A dopant (also called a doping agent) is a small amount of a substance added to a material to alter its physical properties, such as electrical or optical properties. The amount of dopant is typically very low compared to the material being do ...
into the bottom of the nanopillars, to increase the amount of time photons will bounce around the pillars and thus the amount of light captured. As well as capturing light more efficiently, using nanopillars in solar panels will allow them to be flexible. The flexibility gives manufacturers more options on how they want their solar panels to be shaped as well as reduces costs in terms of how delicately the panels have to be handled. Although nanopillars are more efficient and cheaper than standard materials, scientists have not been able to mass-produce them yet. This is a significant drawback to using nanopillars as a part of the manufacturing process.


Antibacterial surfaces

Nanopillars also have functions outside of electronics and can imitate nature's defenses.
Cicada The cicadas () are a superfamily, the Cicadoidea, of insects in the order Hemiptera (true bugs). They are in the suborder Auchenorrhyncha, along with smaller jumping bugs such as leafhoppers and froghoppers. The superfamily is divided into two ...
s' wings are covered in tiny, nanopillar shaped rods. When
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
rests on a cicada's wing, its cell membrane will stick to the nanopillars and the crevices between them, rupturing it. Since the rods on the cicadas are about the same size and shape as artificial nanopillars, it is possible for humans to copy this defense. A surface covered with nanopillars would immediately kill off all soft membrane bacteria. More rigid bacteria will be more likely to not rupture. If mass-produced and installed everywhere, nanopillars could reduce much of the risk of transmitting diseases through touching infected surfaces.


Antibacterial mechanism

There are several models proposed to explain the antibacterial mechanism of the nanopillars. According to the stretching and mechano-inducing model, for a relatively uniform nanotopographies like nanopillars found on cicada wing, the bacteria die due to the rupturing of bacterial cell wall that is suspended between two adjacent nanopillars as opposed to a puncturing mechanism. The nanopillar features like height, density, and sharpness of the nanopillars was found to be affecting the overall antibacterial properties of the nanopillars. However, the relative correlation of nanopillar features is difficult to establish due to several conflicting results in the literature. Alternative antibacterial mechanism of nanopillars include the potential effects of shear force, negative physiological response of bacteria, and intrinsic pressure effects from the interaction between bacterial surface proteins and nanopillars.


High resolution molecular analysis

Another use of nanopillars is observing cells. Nanopillars capture light so well that when lights hits them, the glow the nanopillars emit dies down at around 150 nanometers. Because this distance is less than the wavelength of light, it allows researchers to observe small objects without the interference of background light. This is especially useful in cellular analysis. The cells group around the nanopillars because of its small size and recognize it as an organelle. The nanopillars simply hold the cells in place while the cells are being observed.


Diamond-based quantum sensing

Nano pillars are used in
quantum technologies In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
to enhance the photon outcoupling efficiency of fluorescent defects. Nanopillars are especially effective in the context of color centers hosted in
diamond Diamond is a Allotropes of carbon, solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Diamond is tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of e ...
. Due to the high
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
of diamond, most of the photons originating from the fluorescence of, e.g. Nitrogen-Vacancy (NV) centers are lost due to
total internal reflection In physics, total internal reflection (TIR) is the phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely refl ...
. Nanopillars can enhance the outcoupling efficiency and the directionality of the color center emission. This allows significant boosts in sensitivity for the application of NV quantum sensing, both in the context of nanoscale
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
and quantum magnetometry (e.g., in the form of
scanning probe microscopy Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. SPM was founded in 1981, with the invention of the scanning tunneling microscope, an instrument for imaging ...
). Zhu et al. have shown that it is crucial to include an appropriate tapering of the nanopillars to maximize collection efficiency.


History

In 2006, researchers at the University of Nebraska-Lincoln and the
Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a Federally funded research and development centers, federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now i ...
developed a cheaper and more efficient way to create nanopillars. They used a combination of nanosphere lithography (a way of organizing the lattice) and
reactive ion etching Reactive-ion etching (RIE) is an etching technology used in microfabrication. RIE is a type of dry etching which has different characteristics than wet etching. RIE uses chemically reactive plasma to remove material deposited on wafers. The ...
(molding the nanopillars to the right shape) to make large groups of silicon pillars with less than 500 nm diameters. Then, in 2010, researchers fabricated a way to manufacture nanopillars with tapered ends. The former design of a pillar with a flat blunt top reflected much of the light coming onto the pillars. The tapered tops allow light to enter the forest of nanopillars and the wider bottom absorbs almost all of the light that hits it. This design captures about 99% of the light whereas
nanorods In nanotechnology, nanorods are one morphology of nanoscale objects. Each of their dimensions range from 1–100 nm. They may be synthesized from metals or semiconducting materials. Standard aspect ratios (length divided by width) are 3-5. Nan ...
which have a uniform thickness only captured 85% of the light. After the introduction of tapered ends, researchers started to find many more applications for nanopillars.


See also


Manufacturing process

Constructing nanopillars is a simple but lengthy procedure that can take hours. The process to create nanopillars starts with
anodizing Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts. The process is called ''anodizing'' because the part to be treated forms the anode electrode of an electr ...
a 2.5 mm thick aluminum foil mold. Anodizing the foil creates pores in the foil a micrometer deep and 60 nanometers wide. The next step is to treat the foil with phosphoric acid which expands the pores to 130 nanometers. The foil is anodized once more making its pores a micrometer deeper. Lastly, a small amount of gold is added to the pores to catalyze the reaction for the growth of the
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
material. When the aluminum is scraped away there is a forest of nanopillars left inside a casing of aluminum oxide. Furthermore, pillar and tube structures can also be fabricated by the top-down approach of the combination of deep UV (DUV) lithography and
atomic layer deposition Atomic layer deposition (ALD) is a thin-film deposition technique based on the sequential use of a gas-phase chemical process; it is a subclass of chemical vapour deposition. The majority of ALD reactions use two chemicals called wiktionary:precu ...
(ALD).


References

{{Reflist Nanomaterials