HOME

TheInfoList



OR:

Milankovitch cycles describe the collective effects of changes in the Earth's movements on its
climate Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorologi ...
over thousands of years. The term was coined and named after Serbian
geophysicist Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' som ...
and
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either ...
Milutin Milanković. In the 1920s, he hypothesized that variations in eccentricity,
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
, and
precession Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In oth ...
combined to result in cyclical variations in the intra-annual and latitudinal distribution of
solar radiation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
at the Earth's surface, and that this
orbital forcing Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the sun (see Milankovitch cycles). These orbital changes modify the total amount of sunlight reaching the Earth by up ...
strongly influenced the Earth's climatic patterns.


Earth's movements

The
Earth's rotation Earth's rotation or Earth's spin is the rotation of planet Earth around its own axis, as well as changes in the orientation of the rotation axis in space. Earth rotates eastward, in prograde motion. As viewed from the northern polar star Po ...
around its axis, and revolution around the Sun, evolve over time due to gravitational interactions with other bodies in the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. The variations are complex, but a few cycles are dominant. The
Earth's orbit Earth orbits the Sun at an average distance of 149.60 million km (92.96 million mi) in a counterclockwise direction as viewed from above the Northern Hemisphere. One complete orbit takes  days (1 sidereal year), during which time Earth ...
varies between nearly circular and mildly elliptical (its eccentricity varies). When the orbit is more elongated, there is more variation in the distance between the Earth and the Sun, and in the amount of
Solar Radiation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
, at different times in the year. In addition, the rotational tilt of the Earth (its
obliquity In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbi ...
) changes slightly. A greater tilt makes the seasons more extreme. Finally, the direction in the
fixed stars In astronomy, fixed stars ( la, stellae fixae) is a term to name the full set of glowing points, astronomical objects actually and mainly stars, that appear not to move relative to one another against the darkness of the night sky in the backgro ...
pointed to by the Earth's axis changes (
axial precession In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In partic ...
), while the Earth's elliptical orbit around the Sun rotates ( apsidal precession). The combined effect of precession with eccentricity is that proximity to the Sun occurs during different astronomical seasons. Milankovitch studied changes in these movements of the Earth, which alter the amount and location of solar radiation reaching the Earth. This is known as ''solar forcing'' (an example of
radiative forcing Radiative forcing (or climate forcing) is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured by watts / metre2. It is a scientific concept used to quantify and compare the extern ...
). Milankovitch emphasized the changes experienced at 65° north due to the great amount of land at that latitude. Land masses change temperature more quickly than oceans, because of the mixing of surface and deep water and the fact that soil has a lower volumetric heat capacity than water.


Orbital eccentricity

The Earth's orbit approximates an
ellipse In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
. Eccentricity measures the departure of this ellipse from circularity. The shape of the Earth's orbit varies between nearly circular (theoretically the eccentricity can hit zero) and mildly elliptical (highest eccentricity was 0.0679 in the last 250 million years). See specificall
the downloadable data file
Its
geometric Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
or
logarithmic mean In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass tr ...
is 0.0019. The major component of these variations occurs with a period of 405,000 yearsLaskar2020(eccentricity variation of ±0.012). Other components have 95,000-year and 124,000-year cycles (with a beat period of 400,000 years). They loosely combine into a 100,000-year cycle (variation of −0.03 to +0.02). The present eccentricity is 0.0167 and decreasing. Eccentricity varies primarily due to the gravitational pull of
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
and
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
. The
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the lon ...
of the orbital ellipse, however, remains unchanged; according to
perturbation theory In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle ...
, which computes the evolution of the orbit, the semi-major axis is invariant. The
orbital period The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting pla ...
(the length of a
sidereal year A sidereal year (, ; ), also called a sidereal orbital period, is the time that Earth or another planetary body takes to orbit the Sun once with respect to the fixed stars. Hence, for Earth, it is also the time taken for the Sun to return to t ...
) is also invariant, because according to
Kepler's third law In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbi ...
, it is determined by the semi-major axis. Longer-term variations are caused by interactions involving the perihelia and nodes of the planets Mercury, Venus, Earth, Mars, and Jupiter.


Effect on temperature

The semi-major axis is a constant. Therefore, when Earth's orbit becomes more eccentric, the semi-minor axis shortens. This increases the magnitude of seasonal changes. The relative increase in solar irradiation at closest approach to the Sun (
perihelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
) compared to the irradiation at the furthest distance (
aphelion An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any ell ...
) is slightly larger than four times the eccentricity. For Earth's current orbital eccentricity, incoming solar radiation varies by about 6.8%, while the distance from the Sun currently varies by only 3.4% (). Perihelion presently occurs around 3 January, while aphelion is around 4 July. When the orbit is at its most eccentric, the amount of solar radiation at perihelion will be about 23% more than at aphelion. However, the Earth's eccentricity is so small (at least at present) that the variation in solar irradiation is a minor factor in seasonal climate variation, compared to axial tilt and even compared to the relative ease of heating the larger land masses of the northern hemisphere.


Effect on lengths of seasons

The seasons are quadrants of the Earth's orbit, marked by the two solstices and the two equinoxes.
Kepler's second law In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits ...
states that a body in orbit traces equal areas over equal times; its orbital velocity is highest around perihelion and lowest around aphelion. The Earth spends less time near perihelion and more time near aphelion. This means that the lengths of the seasons vary. Perihelion currently occurs around 3 January, so the Earth's greater velocity shortens winter and autumn in the northern hemisphere. Summer in the northern hemisphere is 4.66 days longer than winter, and spring is 2.9 days longer than autumn. Greater eccentricity increases the variation in the Earth's orbital velocity. Currently, however, the Earth's orbit is becoming less eccentric (more nearly circular). This will make the seasons in the immediate future more similar in length.


Axial tilt (obliquity)

The angle of the Earth's axial tilt with respect to the orbital plane (the obliquity of the
ecliptic The ecliptic or ecliptic plane is the orbital plane of the Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic agains ...
) varies between 22.1° and 24.5°, over a cycle of about 41,000 years. The current tilt is 23.44°, roughly halfway between its extreme values. The tilt last reached its maximum in 8,700 BCE. It is now in the decreasing phase of its cycle, and will reach its minimum around the year 11,800 CE. Increased tilt increases the amplitude of the seasonal cycle in
insolation Solar irradiance is the power per unit area ( surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ...
, providing more solar radiation in each hemisphere's summer and less in winter. However, these effects are not uniform everywhere on the Earth's surface. Increased tilt increases the total annual solar radiation at higher latitudes, and decreases the total closer to the equator. ''Note: See
Axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
. Zero obliquity results in minimum (zero) continuous insolation at the poles and maximum continuous insolation at the equator. Any increase of obliquity (to 90 degrees) causes seasonal increase of insolation at the poles and causes decrease of insolation at the equator on any day of the year except an
Equinox A solar equinox is a moment in time when the Sun crosses the Earth's equator, which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and se ...
.''
The current trend of decreasing tilt, by itself, will promote milder seasons (warmer winters and colder summers), as well as an overall cooling trend. Because most of the planet's snow and ice lies at high latitude, ''decreasing'' tilt may encourage the termination of an
interglacial An interglacial period (or alternatively interglacial, interglaciation) is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene i ...
period and the onset of a
glacial period A glacial period (alternatively glacial or glaciation) is an interval of time (thousands of years) within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate betwe ...
for two reasons: 1) there is less overall summer insolation, and, 2) there is less insolation at higher latitudes (which melts less of the previous winter's snow and ice).


Axial precession

Axial precession is the trend in the direction of the Earth's axis of rotation relative to the fixed stars, with a period of about 25,700 years. Also known as the precession of the equinoxes, this motion means that eventually
Polaris Polaris is a star in the northern circumpolar constellation of Ursa Minor. It is designated α Ursae Minoris ( Latinized to ''Alpha Ursae Minoris'') and is commonly called the North Star or Pole Star. With an apparent magnitude th ...
will no longer be the north
pole star A pole star or polar star is a star, preferably bright, nearly aligned with the axis of a rotating astronomical body. Currently, Earth's pole stars are Polaris (Alpha Ursae Minoris), a bright magnitude-2 star aligned approximately with its ...
. This precession is caused by the tidal forces exerted by the Sun and the Moon on the rotating Earth; both contribute roughly equally to this effect. Currently, perihelion occurs during the southern hemisphere's summer. This means that solar radiation due to both the axial tilt inclining the southern hemisphere toward the Sun, and the Earth's proximity to the Sun, will reach maximum during the southern summer and reach minimum during the southern winter. These effects on heating are thus additive, which means that seasonal variation in irradiation of the southern hemisphere is more extreme. In the northern hemisphere, these two factors reach maximum at opposite times of the year: the north is tilted toward the Sun when the Earth is furthest from the Sun. The two effects work in opposite directions, resulting in less extreme variations in insolation. In about 10,000 years, the north pole will be tilted toward the Sun when the Earth is at perihelion. Axial tilt and orbital eccentricity will both contribute their maximum increase in solar radiation during the northern hemisphere's summer. Axial precession will promote more extreme variation in irradiation of the northern hemisphere and less extreme variation in the south. When the Earth's axis is aligned such that aphelion and perihelion occur near the equinoxes, axial tilt will not be aligned with or against eccentricity.


Apsidal precession

The orbital ellipse itself precesses in space, in an irregular fashion, completing a full cycle in about 112,000 years relative to the fixed stars. Note: The reader may question the number and precision of the periods which the author reports in this early paper. Apsidal precession occurs in the plane of the ecliptic and alters the orientation of the Earth's orbit relative to the ecliptic. This happens primarily as a result of interactions with Jupiter and Saturn. Smaller contributions are also made by the sun's oblateness and by the effects of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
that are well known for Mercury. Apsidal precession combines with the 25,700-year cycle of axial precession (see above) to vary the position in the year that the Earth reaches perihelion. Apsidal precession shortens this period to about 21,000 years, at present. According to a relatively old source (1965), the average value over the last 300,000 years was 23,000 years, varying between 20,800 and 29,000 years. As the orientation of Earth's orbit changes, each season will gradually start earlier in the year. Precession means the Earth's nonuniform motion (see above) will affect different seasons. Winter, for instance, will be in a different section of the orbit. When the Earth's apsides (extremes of distance from the sun) are aligned with the equinoxes, the length of spring and summer combined will equal that of autumn and winter. When they are aligned with the solstices, the difference in the length of these seasons will be greatest.


Orbital inclination

The inclination of Earth's orbit drifts up and down relative to its present orbit. This three-dimensional movement is known as "precession of the ecliptic" or "planetary precession". Earth's current inclination relative to the
invariable plane The invariable plane of a planetary system, also called Laplace's invariable plane, is the plane passing through its barycenter (center of mass) perpendicular to its angular momentum vector. In the Solar System, about 98% of this effect is con ...
(the plane that represents the
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
of the Solar System—approximately the orbital plane of Jupiter) is 1.57°. Milankovitch did not study planetary precession. It was discovered more recently and measured, relative to Earth's orbit, to have a period of about 70,000 years. When measured independently of Earth's orbit, but relative to the invariable plane, however, precession has a period of about 100,000 years. This period is very similar to the 100,000-year eccentricity period. Both periods closely match the 100,000-year pattern of glacial events.


Theory constraints

Materials taken from the Earth have been studied to infer the cycles of past climate. Antarctic ice cores contain trapped air bubbles whose ratios of different oxygen isotopes are a reliable
proxy Proxy may refer to: * Proxy or agent (law), a substitute authorized to act for another entity or a document which authorizes the agent so to act * Proxy (climate), a measured variable used to infer the value of a variable of interest in climate re ...
for global temperatures around the time the ice was formed. Study of this data concluded that the climatic response documented in the ice cores was driven by northern hemisphere insolation as proposed by the Milankovitch hypothesis. Similar astronomical hypotheses had been advanced in the 19th century by
Joseph Adhemar Joseph is a common male given name, derived from the Hebrew Yosef (יוֹסֵף). "Joseph" is used, along with "Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the mo ...
, James Croll, and others. Analysis of deep-ocean cores and of lake depths, and a seminal paper by Hays, Imbrie, and Shackleton provide additional validation through physical evidence. Climate records contained in a core of rock drilled in Arizona show a pattern synchronized with Earth's eccentricity, and cores drilled in New England match it, going back 215 million years.


100,000-year issue

Of all the orbital cycles, Milankovitch believed that obliquity had the greatest effect on climate, and that it did so by varying the summer insolation in northern high latitudes. Therefore, he deduced a 41,000-year period for ice ages.; see also However, subsequent research has shown that
ice age An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages and gre ...
cycles of the
Quaternary glaciation The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma (million years ago) and is ongoing. Although geologists describ ...
over the last million years have been at a period of 100,000 years, which matches the eccentricity cycle. Various explanations for this discrepancy have been proposed, including
frequency modulation Frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. The technology is used in telecommunications, radio broadcasting, signal processing, and computing. In analog ...
or various feedbacks (from
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
, or ice sheet dynamics). Some models can reproduce the 100,000-year cycles as a result of non-linear interactions between small changes in the Earth's orbit and internal oscillations of the climate system. In particular, the mechanism of the stochastic resonance was originally proposed in order to describe this interaction. Jung-Eun Lee of Brown University proposes that precession changes the amount of energy that Earth absorbs, because the southern hemisphere's greater ability to grow sea ice reflects more energy away from Earth. Moreover, Lee says, "Precession only matters when eccentricity is large. That's why we see a stronger 100,000-year pace than a 21,000-year pace." Some others have argued that the length of the climate record is insufficient to establish a statistically significant relationship between climate and eccentricity variations.


Transition changes

From 1–3 million years ago, climate cycles matched the 41,000-year cycle in obliquity. After one million years ago, the
Mid-Pleistocene Transition The Mid-Pleistocene Transition (MPT), also known as the Mid-Pleistocene Revolution (MPR), is a fundamental change in the behaviour of glacial cycles during the Quaternary glaciations. The transition happened approximately 1.25–0.7 mill ...
(MPT) occurred with a switch to the 100,000-year cycle matching eccentricity. The ''transition problem'' refers to the need to explain what changed one million years ago. The MPT can now be reproduced in numerical simulations that include a decreasing trend in
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
and glacially induced removal of
regolith Regolith () is a blanket of unconsolidated, loose, heterogeneous superficial deposits covering solid rock. It includes dust, broken rocks, and other related materials and is present on Earth, the Moon, Mars, some asteroids, and other terrestr ...
.


Interpretation of unsplit peak variances

Even the well-dated climate records of the last million years do not exactly match the shape of the eccentricity curve. Eccentricity has component cycles of 95,000 and 125,000 years. Some researchers, however, say the records do not show these peaks, but only indicate a single cycle of 100,000 years. The split between the two eccentricity components, however, is observed at least once in a drill core from the 500 million years old Scandinavian Alum Shale.


Unsynced stage five observation

Deep-sea core samples show that the interglacial interval known as marine isotope stage 5 began 130,000 years ago. This is 10,000 years before the solar forcing that the Milankovitch hypothesis predicts. (This is also known as the ''causality problem'', because the effect precedes the putative cause.)


Present and future conditions

Since orbital variations are predictable, any model that relates orbital variations to climate can be run forward to predict future climate, with two caveats: the mechanism by which
orbital forcing Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the sun (see Milankovitch cycles). These orbital changes modify the total amount of sunlight reaching the Earth by up ...
influences climate is not definitive; and non-orbital effects can be important (for example, the
human impact on the environment Human impact on the environment (or anthropogenic impact) refers to changes to biophysical environments and to ecosystems, biodiversity, and natural resources caused directly or indirectly by humans. Modifying the environment to fit the need ...
principally increases
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that absorbs and emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse gases in Earth's atmosphere are water vapor (), carbon dioxide (), methane ...
es resulting in a warmer climate). An often-cited 1980 orbital model by Imbrie predicted "the long-term cooling trend that began some 6,000 years ago will continue for the next 23,000 years." More recent work suggests that orbital variations should gradually increase 65° N summer insolation over the next 25,000 years. Earth's orbit will become less eccentric for about the next 100,000 years, so changes in this insolation will be dominated by changes in obliquity, and should not decline enough to permit a new glacial period in the next 50,000 years.


Other celestial bodies


Mars

Since 1972, speculation sought a relationship between the formation of Mars' alternating bright and dark layers in the polar layered deposits, and the planet's orbital climate forcing. In 2002, Laska, Levard, and Mustard showed ice-layer radiance, as a function of depth, correlate with the insolation variations in summer at the Martian north pole, similar to palaeoclimate variations on Earth. They also showed Mars' precession had a period of about 51
kyr The abbreviation kyr means "thousand years". kyr was formerly common in some English language works, especially in geology and astronomy, for the unit of 1,000 years or millennium. The "k" is the unit prefix for kilo- or thousand with the suffix ...
, obliquity had a period of about 120 kyr, and eccentricity had a period ranging between 95 and 99 kyr. In 2003, Head, Mustard, Kreslavsky, Milliken, and Marchant proposed Mars was in an interglacial period for the past 400 kyr, and in a glacial period between 400 and 2100 kyr, due to Mars' obliquity exceeding 30°. At this extreme obliquity, insolation is dominated by the regular periodicity of Mars' obliquity variation.
Fourier analysis In mathematics, Fourier analysis () is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph ...
of Mars' orbital elements, show an obliquity period of 128 kyr, and a precession index period of 73 kyr.
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
has no moon large enough to stabilize its obliquity, which has varied from 10 to 70 degrees. This would explain recent observations of its surface compared to evidence of different conditions in its past, such as the extent of its polar caps.


Outer Solar system

Saturn's moon
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
has a cycle of approximately 60,000 years that could change the location of the
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
lakes. Neptune's moon
Triton Triton commonly refers to: * Triton (mythology), a Greek god * Triton (moon), a satellite of Neptune Triton may also refer to: Biology * Triton cockatoo, a parrot * Triton (gastropod), a group of sea snails * ''Triton'', a synonym of ''Triturus'' ...
has a variation similar to Titan's, which could cause its solid
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
deposits to migrate over long time scales.


Exoplanets

Scientists using computer models to study extreme axial tilts have concluded that high obliquity could cause extreme climate variations, and while that would probably not render a planet uninhabitable, it could pose difficulty for land-based life in affected areas. Most such planets would nevertheless allow development of both simple and more complex lifeforms. Although the obliquity they studied is more extreme than Earth ever experiences, there are scenarios 1.5 to 4.5 billion years from now, as the Moon's stabilizing effect lessens, where obliquity could leave its current range and the poles could eventually point almost directly at the Sun.


References


Bibliography

* ''This is the first work that investigated the derivative of the ice volume in relation to insolation (page 698).''
In Ancient Rocks Scientists See a Climate Cycle Working Across Deep Time (Columbia Climate School, Kevin Krajick, May 7, 2018)
* . * * ''This shows that Milankovitch theory fits the data extremely well, over the past million years, provided that we consider derivatives.'' * The oldest reference for Milankovitch cycles is:
Tying celestial mechanics to Earth's ice age (Physics Today 73 (5), Maslin M. A. 01 May 2020)
*
''This review article discusses cycles and great-scale changes in the global climate during the
Cenozoic The Cenozoic ( ; ) is Earth's current geological era, representing the last 66million years of Earth's history. It is characterised by the dominance of mammals, birds and flowering plants, a cooling and drying climate, and the current configu ...
Era.''


External links

* Campisano, C. J. (2012
Milankovitch Cycles, Paleoclimatic Change, and Hominin Evolution
Nature Education Knowledge 4(3):5
Ice Age – Milankovitch Cycles – National Geographic Channel


Internet Archive of
American Geophysical Union The American Geophysical Union (AGU) is a 501(c)(3) nonprofit organization of Earth, atmospheric, ocean, hydrologic, space, and planetary scientists and enthusiasts that according to their website includes 130,000 people (not members). AGU's ...
lecture {{DEFAULTSORT:Milankovitch cycles Paleoclimatology Climate forcing Ice ages Periodic phenomena