HOME

TheInfoList



OR:

Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using
sheaf theory In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
and complex analysis to study properties and generalizations of functions such as
hyperfunction In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sa ...
s and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces. It helps in the simplification of the proofs due to an algebraic description of the problem considered.


Microfunction

Let ''M'' be a
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
-
analytic manifold In mathematics, an analytic manifold, also known as a C^\omega manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic ge ...
of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
''n'', and let ''X'' be its complexification. The sheaf of microlocal functions on ''M'' is given as :\mathcal^n(\mu_M(\mathcal_X) \otimes \mathcal_) where * \mu_M denotes the microlocalization functor, * \mathcal_ is the relative orientation sheaf. A microfunction can be used to define a Sato's
hyperfunction In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sa ...
. By definition, the sheaf of Sato's hyperfunctions on ''M'' is the restriction of the sheaf of microfunctions to ''M'', in parallel to the fact the sheaf of real-analytic functions on ''M'' is the restriction of the sheaf of holomorphic functions on ''X'' to ''M''.


See also

*
Hyperfunction In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sa ...
* D-module *
Microlocal analysis In mathematical analysis, microlocal analysis comprises techniques developed from the 1950s onwards based on Fourier transforms related to the study of variable-coefficients-linear and nonlinear partial differential equations. This includes gener ...
*
Generalized function In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions ...
* Edge-of-the-wedge theorem * FBI transform *
Localization of a ring In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fraction ...
*
Vanishing cycle In mathematics, vanishing cycles are studied in singularity theory and other parts of algebraic geometry. They are those homology cycles of a smooth fiber in a family which vanish in the singular fiber. For example, in a map from a connected comp ...
*
Gauss–Manin connection In mathematics, the Gauss–Manin connection is a connection on a certain vector bundle over a base space ''S'' of a family of algebraic varieties V_s. The fibers of the vector bundle are the de Rham cohomology groups H^k_(V_s) of the fibers V_s o ...
*
Differential algebra In mathematics, differential rings, differential fields, and differential algebras are rings, fields, and algebras equipped with finitely many derivations, which are unary functions that are linear and satisfy the Leibniz product rule. A n ...
* Perverse sheaf * Mikio Sato * Masaki Kashiwara * Lars Hörmander


Citations


Sources

* *


Further reading


Masaki Kashiwara and Algebraic Analysis

Foundations of algebraic analysis book review
Complex analysis Fourier analysis Generalized functions Partial differential equations Sheaf theory {{mathanalysis-stub