HOME

TheInfoList



OR:

Microbiologically induced calcium carbonate precipitation (MICP) is a bio-geochemical process that induces calcium carbonate precipitation within the soil matrix.
Biomineralization Biomineralization, also written biomineralisation, is the process by which living organisms produce minerals, often to harden or stiffen existing tissues. Such tissues are called mineralized tissues. It is an extremely widespread phenomenon; ...
in the form of calcium carbonate precipitation can be traced back to the
Precambrian The Precambrian (or Pre-Cambrian, sometimes abbreviated pꞒ, or Cryptozoic) is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of th ...
period. Calcium carbonate can be precipitated in three polymorphic forms, which in the order of their usual stabilities are
calcite Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratc ...
,
aragonite Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, (the other forms being the minerals calcite and vaterite). It is formed by biological and physical processes, including pre ...
and
vaterite Vaterite is a mineral, a polymorph of calcium carbonate ( Ca C O3). It was named after the German mineralogist Heinrich Vater. It is also known as mu- calcium carbonate (μ-CaCO3). Vaterite belongs to the hexagonal crystal system, whereas calc ...
. The main groups of microorganisms that can induce the carbonate precipitation are photosynthetic microorganisms such as
cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, bl ...
and
microalgae Microalgae or microphytes are microscopic algae invisible to the naked eye. They are phytoplankton typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist indiv ...
;
sulfate-reducing bacteria Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as termina ...
; and some species of microorganisms involved in
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biolo ...
. Several mechanisms have been identified by which bacteria can induce the calcium carbonate precipitation, including urea hydrolysis,
denitrification Denitrification is a microbially facilitated process where nitrate (NO3−) is reduced and ultimately produces molecular nitrogen (N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denit ...
, sulfate production, and iron reduction. Two different pathways, or autotrophic and heterotrophic pathways, through which calcium carbonate is produced have been identified. There are three autotrophic pathways, which all result in depletion of carbon dioxide and favouring calcium carbonate precipitation. In heterotrophic pathway, two metabolic cycles can be involved: the
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biolo ...
and the
sulfur cycle The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a con ...
. Several applications of this process have been proposed, such as remediation of cracks and corrosion prevention in concrete,Achal, V., Mukherjee, A., Goyal, S., Reddy, M.S. (2012). Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Materials Journal, April, 157-163. biogrout,Rong, H., Qian, C.X., Wang, R.X. (2011). A cementation method of loose particles based on microbe-based cement. Science China: Technological Sciences, 54(7), 1722-1729. sequestration of radionuclides and
heavy metals upright=1.2, Crystals of osmium, a heavy metal nearly twice as dense as lead">lead.html" ;"title="osmium, a heavy metal nearly twice as dense as lead">osmium, a heavy metal nearly twice as dense as lead Heavy metals are generally defined as ...
.


Metabolic pathways


Autotrophic pathway

All three principal kinds of bacteria that are involved in autotrophic production of carbonate obtain carbon from gaseous or dissolved carbon dioxide. These pathways include non-methylotrophic
methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group ...
,
anoxygenic photosynthesis Bacterial anoxygenic photosynthesis differs from the better known oxygenic photosynthesis in plants by the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen). Ba ...
, and oxygenic
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
. Non-methylotrophic methanogegenesis is carried out by methanogenic archaebacteria, which use CO2 and H2 in anaerobiosis to give CH4.


Heterotrophic pathway

Two separate and often concurrent heterotrophic pathways that lead to calcium carbonate precipitation may occur, including active and passive carbonatogenesis. During active carbonatogenesis, the carbonate particles are produced by ionic exchanges through the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
by activation of calcium and/or magnesium ionic pumps or channels, probably coupled with carbonate ion production. During passive carbonatogenesis, two metabolic cycles can be involved, the
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biolo ...
and the
sulfur cycle The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a con ...
. Three different pathways can be involved in the nitrogen cycle:
ammonification The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
of amino acids, dissimilatory reduction of
nitrate Nitrate is a polyatomic ion with the chemical formula . Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are soluble in water. An example of an insolu ...
, and degradation of
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
or uric acid. In the sulfur cycle, bacteria follow the dissimilatory reduction of sulfate.


Ureolysis or degradation of urea

The microbial urease catalyzes the hydrolysis of urea into ammonium and carbonate. One mole of urea is hydrolyzed intracellularly to 1 mol of ammonia and 1 mole of carbamic acid (1), which spontaneously hydrolyzes to form an additional 1 mole of ammonia and carbonic acid (2). CO(NH2)2 + H2O ---> NH2COOH + NH3 (1) NH2COOH + H2O ---> NH3 + H2CO3 (2) Ammonium and carbonic acid form bicarbonate and 2 moles of ammonium and hydroxide ions in water (3 &4). 2NH3 + 2H2O <---> 2NH+4 +2OH (3) H2CO3 <---> HCO3 + H+ (4) The production of hydroxide ions results in the increase of pH, which in turn can shift the bicarbonate equilibrium, resulting in the formation of carbonate ions (5) HCO3 + H+ + 2NH+4 +2OH <---> CO3−2 + 2NH+4 + 2H2O (5) The produced carbonate ions precipitate in the presence of calcium ions as calcium carbonate crystals (6). Ca+2 + CO3−2 <---> CaCO3 (6) The formation of a monolayer of calcite further increases the affinity of the bacteria to the soil surface, resulting in the production of multiple layers of calcite.


Possible applications


Material science

MICP has been reported as a long-term remediation technique that has been exhibited high potential for crack cementation of various structural formations such as granite and concrete.


Treatment of concrete

MICP has been shown to prolong concrete service life due to calcium carbonate precipitation. The calcium carbonate heals the concrete by solidifying on the cracked concrete surface, mimicking the process by which bone fractures in human body are healed by osteoblast cells that mineralize to reform the bone. Two methods are currently being studied: injection of calcium carbonate precipitating bacteria. and by applying bacteria and nutrients as a surface treatment. Increase in strength and durability of MICP treated cement mortar and concrete has been reported.


Precast materials (tiles, bricks, etc.)

Architect
Ginger Krieg Dosier Ginger Krieg Dosier is an American architect who, in 2010, developed a technique for using microbiologically induced calcite precipitation to manufacture bricks for construction. Dosier's brick-making method consists of filling a rectangular for ...
won the 2010 Metropolis Next Generation Design Competition for her work using microbial-induced calcite precipitation to manufacture bricks while lowering carbon dioxide emissions. She has since founded Biomason, Inc., a company that employs microorganisms and chemical processes to manufacture building materials.


Fillers for rubber, plastics and ink

MICP technique may be applied to produce a material that can be used as a filler in
rubber Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds. Thailand, Malaysia, and ...
and
plastics Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptabi ...
, fluorescent particles in stationery ink, and a fluorescent marker for biochemistry applications, such as
western blot The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detect ...
.


Liquefaction prevention

Microbial induced calcium carbonate precipitation has been proposed as an alternative cementation technique to improve the properties of potentially liquefiable sand. The increase in shear strength, confined compressive strength, stiffness and liquefaction resistance was reported due to calcium carbonate precipitation resulting from microbial activity. The increase of soil strength from MICP is a result of the bonding of the grains and the increased density of the soil. Research has shown a linear relationship between the amount of carbonate precipitation and the increase in strength and porosity. A 90% decrease in porosity has also been observed in MICP treated soil. Light microscopic imaging suggested that the mechanical strength enhancement of cemented sandy material is caused mostly due to point-to-point contacts of calcium carbonate crystals and adjacent sand grains. One-dimensional column experiments allowed the monitoring of treatment progration by the means of change in pore fluid chemistry. Triaxial compression tests on untreated and bio-cemented Ottawa sand have shown an increase in shear strength by a factor of 1.8. Changes in pH and concentrations of urea, ammonium, calcium and calcium carbonate in pore fluid with the distance from the injection point in 5-meter column experiments have shown that bacterial activity resulted in successful hydrolysis of urea, increase in pH and precipitation of calcite. However, such activity decreased as the distance from the injection point increased. Shear wave velocity measurements demonstrated that positive correlation exists between shear wave velocity and the amount of precipitated calcite. One of the first patents on ground improvement by MICP was the patent “Microbial Biocementation” by Murdoch University (Australia). A large scale (100 m3) have shown a significant increase in shear wave velocity was observed during the treatment. Originally MICP was tested and designed for underground applications in water saturated ground, requiring injection and production pumps. Recent work has demonstrated that surface percolation or irrigation is also feasible and in fact provides more strength per amount of calcite provided because crystals form more readily at the bridging points between sand particles over which the water percolates. Benefits of MICP for liquefaction prevention MICP has the potential to be a cost-effective and green alternative to traditional methods of stabilizing soils, such as chemical grouting, which typically involve the injection of synthetic materials into the soil. These synthetic additives are typically costly and can create environmental hazards by modifying the pH and contaminating soils and groundwater. Excluding sodium silicate, all traditional chemical additives are toxic. Soils engineered with MICP meet green construction requirements because the process exerts minimal disturbance to the soil and the environment.


Possible limitations of MICP as a cementation technique

MICP treatment may be limited to deep soil due to limitations of bacterial growth and movement in subsoil. MICP may be limited to the soils containing limited amounts of fines due to the reduction in pore spaces in fine soils. Based on the size of microorganism, the applicability of biocementation is limited to GW, GP, SW, SP, ML, and organic soils. Bacteria are not expected to enter through pore throats smaller than approximately 0.4 µm. In general, the microbial abundance was found to increase with the increase in particle size. On the other hand, the fine particles may provide more favorable nucleation sites for calcium carbonate precipitation because the mineralogy of the grains could directly influence the thermodynamics of the precipitation reaction in the system. The habitable pores and traversable pore throats were found in coarse sediments and some clayey sediments at shallow depth. In clayey soil, bacteria are capable of reorienting and moving clay particles under low confining stress (at shallow depths). However, inability to make these rearrangements under high confining stresses limits bacterial activity at larger depths. Furthermore, sediment-cell interaction may cause puncture or tensile failure of the cell membrane. Similarly, at larger depths, silt and sand particles may crush and cause a reduction in pore spaces, reducing the biological activity. Bacterial activity is also impacted by challenges such as predation, competition, pH, temperature, and nutrient availability. These factors can contribute to the population decline of bacteria. Many of these limitations can be overcome through the use of MICP through bio-stimulation - a process through which indigenous ureolytic soil bacteria are enriched in situ. This method is not always possible as not all indigenous soils have enough ureolytic bacteria to achieve successful MICP.


Remediation for heavy metal and radionuclide contamination

MICP is a promising technique that can be used for containment of various contaminants and heavy metals. The availability of
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
in soil may reduced by its
chelation Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands are ...
with the MICP product, which is the mechanism responsible for lead immobilization. MICP can be also applied to achieve sequestration of heavy metals and radionuclides. Microbially induced calcium carbonate precipitation of radionuclide and contaminant metals into
calcite Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratc ...
is a competitive co-precipitation reaction in which suitable divalent cations are incorporated into the calcite lattice.
Europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lan ...
, a trivalent
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
, which was used as a homologue for trivalent
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
s, such as Pu(III), Am(III), and Cm(III), was shown to incorporate into the calcite phase substituting for Ca(II) as well as in a low-symmetry site within the biomineral.


Prevention

Shewanella oneidensis inhibits the dissolution of calcite under laboratory conditions.


References

{{Reflist, 30em


External links


bioMASON, Inc.
Pedology