HOME

TheInfoList



OR:

A microbial mat is a multi-layered sheet of
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in old ...
s, mainly
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
and
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
, or bacteria alone. Microbial mats grow at
interface Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Int ...
s between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as
endosymbiont An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within ...
s of
animal Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage ...
s. Although only a few centimetres thick at most, microbial mats create a wide range of internal chemical environments, and hence generally consist of layers of microorganisms that can feed on or at least tolerate the dominant chemicals at their level and which are usually of closely related species. In moist conditions mats are usually held together by slimy substances secreted by the microorganisms. In many cases some of the bacteria form tangled webs of filaments which make the mat tougher. The best known physical forms are flat mats and stubby pillars called
stromatolite Stromatolites () or stromatoliths () are layered sedimentary formations ( microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota (formerly proteobacteria). T ...
s, but there are also spherical forms. Microbial mats are the earliest form of life on Earth for which there is good
fossil A fossil (from Classical Latin , ) is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved ...
evidence, from , and have been the most important members and maintainers of the planet's
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syst ...
s. Originally they depended on
hydrothermal vent A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspo ...
s for energy and chemical "food", but the development of
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
allow mats to proliferate outside of these environments by utilizing a more widely available energy source, sunlight. The final and most significant stage of this liberation was the development of oxygen-producing photosynthesis, since the main chemical inputs for this are
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
and water. As a result, microbial mats began to produce the atmosphere we know today, in which free
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
is a vital component. At around the same time they may also have been the birthplace of the more complex
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
type of
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
, of which all
multicellular A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially ...
organisms are composed. Microbial mats were abundant on the shallow seabed until the Cambrian substrate revolution, when animals living in shallow seas increased their burrowing capabilities and thus broke up the surfaces of mats and let oxygenated water into the deeper layers, poisoning the oxygen-intolerant microorganisms that lived there. Although this revolution drove mats off soft floors of shallow seas, they still flourish in many environments where burrowing is limited or impossible, including rocky seabeds and shores, and hyper-saline and brackish lagoons. They are found also on the floors of the deep oceans. Because of microbial mats' ability to use almost anything as "food", there is considerable interest in industrial uses of mats, especially for water treatment and for cleaning up
pollution Pollution is the introduction of contaminants into the natural environment that cause adverse change. Pollution can take the form of any substance (solid, liquid, or gas) or energy (such as radioactivity, heat, sound, or light). Pollutants, th ...
.


Description

Microbial mats may also be referred to as
algal mat Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments ar ...
s and
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
l mats. They are a type of
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular po ...
that is large enough to see with the naked eye and robust enough to survive moderate physical stresses. These colonies of
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
form on surfaces at many types of
interface Interface or interfacing may refer to: Academic journals * ''Interface'' (journal), by the Electrochemical Society * '' Interface, Journal of Applied Linguistics'', now merged with ''ITL International Journal of Applied Linguistics'' * '' Int ...
, for example between water and the
sediment Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand ...
or rock at the bottom, between air and rock or sediment, between soil and bed-rock, etc. Such interfaces form vertical chemical gradients, i.e. vertical variations in chemical composition, which make different levels suitable for different types of bacteria and thus divide microbial mats into layers, which may be sharply defined or may merge more gradually into each other. A variety of microbes are able to transcend the limits of diffusion by using "nanowires" to shuttle electrons from their metabolic reactions up to two centimetres deep in the sediment – for example, electrons can be transferred from reactions involving hydrogen sulfide deeper within the sediment to oxygen in the water, which acts as an electron acceptor. The best-known types of microbial mat may be flat laminated mats, which form on approximately horizontal surfaces, and
stromatolites Stromatolites () or stromatoliths () are layered sedimentary formations (microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota (formerly proteobacteria). Th ...
, stubby pillars built as the microbes slowly move upwards to avoid being smothered by sediment deposited on them by water. However, there are also spherical mats, some on the outside of pellets of rock or other firm material and others ''inside'' spheres of sediment.


Structure

A microbial mat consists of several layers, each of which is dominated by specific types of
microorganism A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in old ...
, mainly
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
. Although the composition of individual mats varies depending on the environment, as a general rule the by-products of each group of microorganisms serve as "food" for other groups. In effect each mat forms its own
food chain A food chain is a linear network of links in a food web starting from producer organisms (such as grass or algae which produce their own food via photosynthesis) and ending at an apex predator species (like grizzly bears or killer whales), de ...
, with one or a few groups at the top of the food chain as their by-products are not consumed by other groups. Different types of microorganism dominate different layers based on their
comparative advantage In an economic model, agents have a comparative advantage over others in producing a particular good if they can produce that good at a lower relative opportunity cost or autarky price, i.e. at a lower relative marginal cost prior to trade. C ...
for living in that layer. In other words, they live in positions where they can out-perform other groups rather than where they would absolutely be most comfortable — ecological relationships between different groups are a combination of competition and co-operation. Since the
metabolic Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
capabilities of bacteria (what they can "eat" and what conditions they can tolerate) generally depend on their
phylogeny A phylogenetic tree (also phylogeny or evolutionary tree Felsenstein J. (2004). ''Inferring Phylogenies'' Sinauer Associates: Sunderland, MA.) is a branching diagram or a tree showing the evolutionary relationships among various biological s ...
(i.e. the most closely related groups have the most similar metabolisms), the different layers of a mat are divided both by their different metabolic contributions to the community and by their phylogenetic relationships. In a wet environment where sunlight is the main source of energy, the uppermost layers are generally dominated by
aerobic Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics, a form of aerobic exercise * Aerobic respiration, the aerobic process of cel ...
photosynthesizing
cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, bl ...
(blue-green bacteria whose color is caused by their having
chlorophyll Chlorophyll (also chlorophyl) is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words , ("pale green") and , ("leaf"). Chlorophyll allow plants to ...
), while the lowest layers are generally dominated by
anaerobic Anaerobic means "living, active, occurring, or existing in the absence of free oxygen", as opposed to aerobic which means "living, active, or occurring only in the presence of oxygen." Anaerobic may also refer to: * Anaerobic adhesive, a bonding a ...
sulfate-reducing bacteria Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as termina ...
. Sometimes there are intermediate (oxygenated only in the daytime) layers inhabited by
facultative anaerobic A facultative anaerobic organism is an organism that makes ATP by aerobic respiration if oxygen is present, but is capable of switching to fermentation if oxygen is absent. Some examples of facultatively anaerobic bacteria are ''Staphylococcus' ...
bacteria. For example, in hypersaline ponds near Guerrero Negro (Mexico) various kind of mats were explored. There are some mats with a middle purple layer inhabited by photosynthesizing purple bacteria. Some other mats have a white layer inhabited by chemotrophic sulfur oxidizing bacteria and beneath them an olive layer inhabited by photosynthesizing
green sulfur bacteria The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur. Green sulfur bacteria are nonmotile (except ''Chloroherpeton thalassium'', which may glide) and capable of anoxygenic photosynthe ...
and
heterotrophic A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
bacteria.Garcia-Pichel F., Mechling M., Castenholz R.W.
Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community
Appl. and Env. Microbiology, May 1994, pp. 1500–1511
However, this layer structure is not changeless during a day: some species of cyanobacteria migrate to deeper layers at morning, and go back at evening, to avoid intensive solar light and UV radiation at mid-day. Microbial mats are generally held together and bound to their substrates by slimy
extracellular polymeric substance Extracellular polymeric substances (EPSs) are natural polymers of high molecular weight secreted by microorganisms into their environment. EPSs establish the functional and structural integrity of biofilms, and are considered the fundamental comp ...
s which they secrete. In many cases some of the bacteria form filaments (threads), which tangle and thus increase the colonies' structural strength, especially if the filaments have sheaths (tough outer coverings). This combination of slime and tangled threads attracts other microorganisms which become part of the mat community, for example
protozoa Protozoa (singular: protozoan or protozoon; alternative plural: protozoans) are a group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic tissues and debris. Histo ...
, some of which feed on the mat-forming bacteria, and
diatom A diatom ( Neo-Latin ''diatoma''), "a cutting through, a severance", from el, διάτομος, diátomos, "cut in half, divided equally" from el, διατέμνω, diatémno, "to cut in twain". is any member of a large group comprising se ...
s, which often seal the surfaces of submerged microbial mats with thin,
parchment Parchment is a writing material made from specially prepared untanned skins of animals—primarily sheep, calves, and goats. It has been used as a writing medium for over two millennia. Vellum is a finer quality parchment made from the skins ...
-like coverings. Marine mats may grow to a few centimeters in thickness, of which only the top few millimeters are oxygenated.


Types of environment colonized

Underwater microbial mats have been described as layers that live by exploiting and to some extent modifying local chemical gradients, i.e. variations in the chemical composition. Thinner, less complex biofilms live in many
sub-aerial In natural science, subaerial (literally "under the air"), has been used since 1833,Subaerial
in the Merriam ...
environments, for example on rocks, on mineral particles such as sand, and within
soil Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former ...
. They have to survive for long periods without liquid water, often in a dormant state. Microbial mats that live in tidal zones, such as those found in the Sippewissett salt marsh, often contain a large proportion of similar microorganisms that can survive for several hours without water. Microbial mats and less complex types of biofilm are found at temperature ranges from –40 °C to +120 °C, because variations in pressure affect the temperatures at which water remains liquid. They even appear as
endosymbiont An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within ...
s in some animals, for example in the hindguts of some echinoids.


Ecological and geological importance

Microbial mats use all of the types of metabolism and feeding strategy that have evolved on Earth—anoxygenic and oxygenic
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
; anaerobic and aerobic
chemotroph A Chemotroph is an organism that obtains energy by the oxidation of electron donors in their environments. These molecules can be organic (chemoorganotrophs) or inorganic ( chemolithotrophs). The chemotroph designation is in contrast to phototr ...
y (using chemicals rather than sunshine as a source of energy); organic and inorganic
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
and
fermentation Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food p ...
(i..e converting food into energy with and without using oxygen in the process);
autotrophy An autotroph or primary producer is an organism that produces complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide,Morris, J. et al. (2019). "Biology: How Life Works", ...
(producing food from inorganic compounds) and
heterotrophy A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
(producing food only from organic compounds, by some combination of
predation Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill ...
and detritivory). Most sedimentary rocks and ore deposits have grown by a
reef A reef is a ridge or shoal of rock, coral or similar relatively stable material, lying beneath the surface of a natural body of water. Many reefs result from natural, abiotic processes—deposition of sand, wave erosion planing down rock ...
-like build-up rather than by "falling" out of the water, and this build-up has been at least influenced and perhaps sometimes caused by the actions of microbes.
Stromatolites Stromatolites () or stromatoliths () are layered sedimentary formations (microbialite) that are created mainly by photosynthetic microorganisms such as cyanobacteria, sulfate-reducing bacteria, and Pseudomonadota (formerly proteobacteria). Th ...
, bioherms (domes or columns similar internally to stromatolites) and
biostrome A reef knoll is a land-based landform that comprises an immense pile of calcareous material that accumulated on a previously existing ancient sea floor. At the time of its accumulation it may have had enough structure from organisms such as sponges ...
s (distinct sheets of sediment) are among such microbe-influenced build-ups. Other types of microbial mat have created wrinkled "elephant skin" textures in marine sediments, although it was many years before these textures were recognized as
trace fossil A trace fossil, also known as an ichnofossil (; from el, ἴχνος ''ikhnos'' "trace, track"), is a fossil record of biological activity but not the preserved remains of the plant or animal itself. Trace fossils contrast with body fossils, ...
s of mats. Microbial mats have increased the concentration of metal in many ore deposits, and without this it would not be feasible to mine them—examples include iron (both sulfide and oxide ores), uranium, copper, silver and gold deposits.


Role in the history of life


The earliest mats

Microbial mats are among the oldest clear signs of life, as microbially induced sedimentary structures (MISS) formed have been found in
western Australia Western Australia (commonly abbreviated as WA) is a state of Australia occupying the western percent of the land area of Australia excluding external territories. It is bounded by the Indian Ocean to the north and west, the Southern Ocean to t ...
. At that early stage the mats' structure may already have been similar to that of modern mats that do not include photosynthesizing bacteria. It is even possible that non-photosynthesizing mats were present as early as . If so, their energy source would have been
hydrothermal vent A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspo ...
s (high-pressure
hot springs A hot spring, hydrothermal spring, or geothermal spring is a spring produced by the emergence of geothermally heated groundwater onto the surface of the Earth. The groundwater is heated either by shallow bodies of magma (molten rock) or by circ ...
around submerged
volcano A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates ...
es), and the evolutionary split between
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
and archea may also have occurred around this time. – abstract with link to free full content (PDF) The earliest mats were probably small, single-species
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular po ...
s of
chemotroph A Chemotroph is an organism that obtains energy by the oxidation of electron donors in their environments. These molecules can be organic (chemoorganotrophs) or inorganic ( chemolithotrophs). The chemotroph designation is in contrast to phototr ...
s that relied on hydrothermal vents to supply both energy and chemical "food". Within a short time (by geological standards) the build-up of dead microorganisms would have created an
ecological niche In ecology, a niche is the match of a species to a specific environmental condition. Three variants of ecological niche are described by It describes how an organism or population responds to the distribution of resources and competitors (for ...
for scavenging
heterotroph A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
s, possibly methane-emitting and sulfate-reducing organisms that would have formed new layers in the mats and enriched their supply of biologically useful chemicals.


Photosynthesis

It is generally thought that
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
, the biological generation of chemical energy from light, evolved shortly after (3 billion). However an
isotope analysis Isotope analysis is the identification of isotopic signature, abundance of certain stable isotopes of chemical elements within organic and inorganic compounds. Isotopic analysis can be used to understand the flow of energy through a food w ...
suggests that oxygenic photosynthesis may have been widespread as early as . The eminent researcher into Earth's earliest life, William Schopf, argues that, if one did not know their age, one would classify some of the fossil organisms in Australian stromatolites from as
cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, bl ...
, which are oxygen-producing photosynthesizers. There are several different types of photosynthetic reaction, and analysis of bacterial DNA indicates that photosynthesis first arose in anoxygenic
purple bacteria Purple bacteria or purple photosynthetic bacteria are Gram-negative proteobacteria that are phototrophic, capable of producing their own food via photosynthesis. They are pigmented with bacteriochlorophyll ''a'' or ''b'', together with variou ...
, while the
oxygenic photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
seen in
cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, bl ...
and much later in
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae excl ...
s was the last to evolve. The earliest photosynthesis may have been powered by
infra-red Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
light, using modified versions of
pigments A pigment is a colored material that is completely or nearly insoluble in water. In contrast, dyes are typically soluble, at least at some stage in their use. Generally dyes are often organic compounds whereas pigments are often inorganic compoun ...
whose original function was to detect infra-red heat emissions from hydrothermal vents. The development of photosynthetic energy generation enabled the microorganisms first to colonize wider areas around vents and then to use sunlight as an energy source. The role of the hydrothermal vents was now limited to supplying reduced metals into the oceans as a whole rather than being the main supporters of life in specific locations. Heterotrophic scavengers would have accompanied the photosynthesizers in their migration out of the "hydrothermal ghetto". The evolution of purple bacteria, which do not produce or use oxygen but can tolerate it, enabled mats to colonize areas that locally had relatively high concentrations of oxygen, which is toxic to organisms that are not adapted to it. Microbial mats would have been separated into oxidized and reduced layers, and this specialization would have increased their productivity. It may be possible to confirm this model by analyzing the isotope ratios of both carbon and sulfur in sediments laid down in shallow water. The last major stage in the evolution of microbial mats was the appearance of
cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, bl ...
, photosynthesizers which both produce and use oxygen. This gave undersea mats their typical modern structure: an oxygen-rich top layer of cyanobacteria; a layer of photosynthesizing purple bacteria that could tolerate oxygen; and oxygen-free, H2S-dominated lower layers of heterotrophic scavengers, mainly methane-emitting and sulfate-reducing organisms. It is estimated that the appearance of oxygenic photosynthesis increased biological productivity by a factor of between 100 and 1,000. All photosynthetic
reactions Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction * Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and m ...
require a
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth met ...
, but the significance of oxygenic photosynthesis is that it uses
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as ...
as a reducing agent, and water is much more plentiful than the geologically produced reducing agents on which photosynthesis previously depended. The resulting increases in the populations of photosynthesizing bacteria in the top layers of microbial mats would have caused corresponding population increases among the chemotrophic and
heterotrophic A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
microorganisms that inhabited the lower layers and which fed respectively on the by-products of the photosynthesizers and on the corpses and / or living bodies of the other mat organisms. These increases would have made microbial mats the planet's dominant ecosystems. From this point onwards life itself produced significantly more of the resources it needed than did geochemical processes. Oxygenic photosynthesis in microbial mats would also have increased the free oxygen content of the Earth's atmosphere, both directly by emitting oxygen and because the mats emitted molecular hydrogen (H2), some of which would have escaped from the Earth's atmosphere before it could re-combine with free oxygen to form more water. Microbial mats thus played a major role in the evolution of organisms which could first tolerate free oxygen and then use it as an energy source. Oxygen is toxic to organisms that are not adapted to it, but greatly increases the metabolic efficiency of oxygen-adapted organisms — for example anaerobic
fermentation Fermentation is a metabolic process that produces chemical changes in organic substrates through the action of enzymes. In biochemistry, it is narrowly defined as the extraction of energy from carbohydrates in the absence of oxygen. In food p ...
produces a net yield of two
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and b ...
s of
adenosine triphosphate Adenosine triphosphate (ATP) is an organic compound that provides energy to drive many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms ...
, cells' internal "fuel", per molecule of
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
, while
aerobic respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
produces a net yield of 36. The oxygenation of the atmosphere was a prerequisite for the evolution of the more complex
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
type of cell, from which all
multicellular A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially ...
organisms are built. Cyanobacteria have the most complete biochemical "toolkits" of all the mat-forming organisms: the photosynthesis mechanisms of both green bacteria and purple bacteria; oxygen production; and the
Calvin cycle The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into ...
, which converts
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
and water into
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may o ...
s and
sugar Sugar is the generic name for sweet-tasting, soluble carbohydrates, many of which are used in food. Simple sugars, also called monosaccharides, include glucose, fructose, and galactose. Compound sugars, also called disaccharides or do ...
s. It is likely that they acquired many of these sub-systems from existing mat organisms, by some combination of
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
and
endosymbiosis An ''endosymbiont'' or ''endobiont'' is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον ''endon'' "within ...
followed by fusion. Whatever the causes, cyanobacteria are the most self-sufficient of the mat organisms and were well-adapted to strike out on their own both as floating mats and as the first of the
phytoplankton Phytoplankton () are the autotrophic (self-feeding) components of the plankton community and a key part of ocean and freshwater ecosystems. The name comes from the Greek words (), meaning 'plant', and (), meaning 'wanderer' or 'drifter'. ...
, which forms the basis of most marine
food chain A food chain is a linear network of links in a food web starting from producer organisms (such as grass or algae which produce their own food via photosynthesis) and ending at an apex predator species (like grizzly bears or killer whales), de ...
s.


Origin of eukaryotes

The time at which
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
s first appeared is still uncertain: there is reasonable evidence that fossils dated between and represent eukaryotes, but the presence of
sterane Sterane (cyclopentanoperhydrophenanthrenes) compounds are a class of tetracyclic compounds derived from steroids or sterols via diagenetic and catagenetic degradation and saturation. Steranes have an androstane skeleton with a side chain at carb ...
s in
Australia Australia, officially the Commonwealth of Australia, is a sovereign country comprising the mainland of the Australian continent, the island of Tasmania, and numerous smaller islands. With an area of , Australia is the largest country by ...
n
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4) and tiny fragments (silt-sized particles) of other minerals, especiall ...
s may indicate that eukaryotes were present . There is still debate about the origins of eukaryotes, and many of the theories focus on the idea that a bacterium first became an endosymbiont of an anaerobic archean and then fused with it to become one organism. If such endosymbiosis was an important factor, microbial mats would have encouraged it. There are two known variations of this scenario: *The boundary between the oxygenated and oxygen-free zones of a mat would have moved up when photosynthesis shut down at night and back down when photosynthesis resumed after the next sunrise. Symbiosis between independent aerobic and anaerobic organisms would have enabled both to live comfortably in the zone that was subject to oxygen "tides", and subsequent endosymbiosis would have made such partnerships more mobile. *The initial partnership may have been between anaerobic archea that required molecular hydrogen (H2) and heterotrophic bacteria that produced it and could live both with and without oxygen.


Life on land

Microbial mats from ~ provide the first evidence of life in the terrestrial realm.


The earliest multicellular "animals"

The
Ediacara biota The Ediacaran (; formerly Vendian) biota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period (). These were composed of enigmatic tubular and frond-shaped, mostly sessil ...
are the earliest widely accepted evidence of multicellular "animals". Most
Ediacaran The Ediacaran Period ( ) is a geological period that spans 96 million years from the end of the Cryogenian Period 635 million years ago (Mya), to the beginning of the Cambrian Period 538.8 Mya. It marks the end of the Proterozoic Eon, and t ...
strata with the "elephant skin" texture characteristic of microbial mats contain fossils, and Ediacaran fossils are hardly ever found in beds that do not contain these microbial mats.
Adolf Seilacher Adolf "Dolf" Seilacher (February 24, 1925 – April 26, 2014) was a German palaeontologist who worked in evolutionary and ecological palaeobiology for over 60 years. He is best known for his contributions to the study of trace fossils; constructi ...
categorized the "animals" as: "mat encrusters", which were permanently attached to the mat; "mat scratchers", which grazed the surface of the mat without destroying it; "mat stickers", suspension feeders that were partially embedded in the mat; and "undermat miners", which burrowed underneath the mat and fed on decomposing mat material.


The Cambrian substrate revolution

In the Early Cambrian, however, organisms began to burrow vertically for protection or food, breaking down the microbial mats, and thus allowing water and oxygen to penetrate a considerable distance below the surface and kill the oxygen-intolerant microorganisms in the lower layers. As a result of this Cambrian substrate revolution, marine microbial mats are confined to environments in which burrowing is non-existent or negligible: very harsh environments, such as hyper-saline lagoons or brackish estuaries, which are uninhabitable for the burrowing organisms that broke up the mats; rocky "floors" which the burrowers cannot penetrate; the depths of the oceans, where burrowing activity today is at a similar level to that in the shallow coastal seas before the revolution.


Current status

Although the Cambrian substrate revolution opened up new niches for animals, it was not catastrophic for microbial mats, but it did greatly reduce their extent.


How microbial mats help paleontologists

Most fossils preserve only the hard parts of organisms, e.g. shells. The rare cases where soft-bodied fossils are preserved (the remains of soft-bodied organisms and also of the soft parts of organisms for which only hard parts such as shells are usually found) are extremely valuable because they provide information about organisms that are hardly ever fossilized and much more information than is usually available about those for which only the hard parts are usually preserved. Microbial mats help to preserve soft-bodied fossils by: *Capturing corpses on the sticky surfaces of mats and thus preventing them from floating or drifting away. *Physically protecting them from being eaten by scavengers and broken up by burrowing animals, and protecting fossil-bearing sediments from erosion. For example, the speed of water current required to erode sediment bound by a mat is 20–30 times as great as the speed required to erode a bare sediment. *Preventing or reducing decay both by physically screening the remains from decay-causing bacteria and by creating chemical conditions that are hostile to decay-causing bacteria. *Preserving tracks and burrows by protecting them from erosion. Many trace fossils date from significantly earlier than the body fossils of animals that are thought to have been capable of making them and thus improve paleontologists' estimates of when animals with these capabilities first appeared.


Industrial uses

The ability of microbial mat communities to use a vast range of "foods" has recently led to interest in industrial uses. There have been trials of microbial mats for purifying water, both for human use and in
fish farming upright=1.3, Salmon farming in the sea (mariculture) at Loch Ainort, Isle of Skye">mariculture.html" ;"title="Salmon farming in the sea (mariculture">Salmon farming in the sea (mariculture) at Loch Ainort, Isle of Skye, Scotland Fish farming o ...
, and studies of their potential for cleaning up
oil spill An oil spill is the release of a liquid petroleum hydrocarbon into the environment, especially the marine ecosystem, due to human activity, and is a form of pollution. The term is usually given to marine oil spills, where oil is released into t ...
s. As a result of the growing commercial potential, there have been applications for and grants of
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an enabling disclosure of the invention."A ...
s relating to the growing, installation and use of microbial mats, mainly for cleaning up pollutants and waste products.; ; cites U.S. Patents 7351005 and 7374670


See also

* Biological soil crust * Cambrian substrate revolution *
Cyanobacteria Cyanobacteria (), also known as Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name ''cyanobacteria'' refers to their color (), which similarly forms the basis of cyanobacteria's common name, bl ...
*
Ediacaran type preservation Ediacaran type preservation relates to the dominant preservational mode in the Ediacaran period, where Ediacaran organisms were preserved as casts on the surface of microbial mats. Exceptional preservation All but the smallest fraction of the ...
*
Evolutionary history of life The history of life on Earth traces the processes by which living and fossil organisms evolved, from the earliest emergence of life to present day. Earth formed about 4.5 billion years ago (abbreviated as ''Ga'', for ''gigaannum'') and evide ...
*
Sippewissett Microbial Mat The Sippewissett microbial mat is a microbial mat in the Sippewissett Salt Marsh located along the lower eastern Buzzards Bay shoreline of Cape Cod, about 5 miles north of Woods Hole and 1 mile southwest of West Falmouth, Massachusetts, in the Unit ...


Notes


References

* Seckbach S (2010
''Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems''
Springer, .


External links

* – outline of microbial mats and pictures of mats in various situations and at various magnifications. {{DEFAULTSORT:Microbial Mat Archean life Cambrian life Microbiology Fossils Phanerozoic Proterozoic life Evolutionary biology