HOME

TheInfoList



OR:

Mariner 2 (Mariner-Venus 1962), an American space probe to
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
, was the first robotic
space probe A space probe is an artificial satellite that travels through space to collect scientific data. A space probe may orbit Earth; approach the Moon; travel through interplanetary space; flyby, orbit, or land or fly on other planetary bodies; o ...
to conduct a successful planetary encounter. The first successful
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, ...
in the
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of
Mariner 1 Mariner 1, built to conduct the first American planetary flyby of Venus, was the first spacecraft of NASA's interplanetary Mariner program. Developed by Jet Propulsion Laboratory, and originally planned to be a purpose-built probe launched su ...
. The missions of the Mariner 1 and 2 spacecraft are sometimes known as the Mariner R missions. Original plans called for the probes to be launched on the Atlas-Centaur, but serious developmental problems with that vehicle forced a switch to the much smaller Agena B second stage. As such, the design of the Mariner R vehicles was greatly simplified. Far less instrumentation was carried than on the Soviet Venera probes of this period—for example, forgoing a TV camera—as the Atlas-Agena B had only half as much lift capacity as the Soviet 8K78 booster. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962, and passed as close as to Venus on December 14, 1962. The Mariner probe consisted of a 100 cm (39.4 in) diameter hexagonal bus, to which
solar panel A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic solar cells mounted in a (usually rectangular) frame, and a neatly organised collection of PV panels is called a photo ...
s, instrument booms, and antennas were attached. The scientific instruments on board the Mariner spacecraft were: two
radiometer A radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the microwave ...
s (one each for the
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
and
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
portions of the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
), a micrometeorite sensor, a solar plasma sensor, a
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary pa ...
sensor, and a
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
. These instruments were designed to measure the temperature distribution on the surface of Venus and to make basic measurements of Venus'
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A ...
. The primary mission was to receive communications from the spacecraft in the vicinity of Venus and to perform
radiometric Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light. Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to photometric techniques, which ...
temperature measurements of the planet. A second objective was to measure the
interplanetary magnetic field The interplanetary magnetic field (IMF), now more commonly referred to as the heliospheric magnetic field (HMF), is the component of the solar magnetic field that is dragged out from the solar corona by the solar wind flow to fill the Solar Sy ...
and charged particle environment. En route to Venus, Mariner 2 measured the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
, a constant stream of charged particles flowing outwards from the Sun, confirming the measurements by Luna 1 in 1959. It also measured interplanetary dust, which turned out to be scarcer than predicted. In addition, Mariner 2 detected high-energy charged particles coming from the Sun, including several brief
solar flare A solar flare is an intense localized eruption of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other sol ...
s, as well as
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s from outside the
Solar System The Solar System Capitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar ...
. As it flew by Venus on December 14, 1962, Mariner 2 scanned the planet with its pair of radiometers, revealing that Venus has cool clouds and an extremely hot surface.


Background

With the advent of the
Cold War The Cold War is a term commonly used to refer to a period of geopolitical tension between the United States and the Soviet Union and their respective allies, the Western Bloc and the Eastern Bloc. The term '' cold war'' is used because t ...
, the two then-
superpower A superpower is a state with a dominant position characterized by its extensive ability to exert influence or project power on a global scale. This is done through the combined means of economic, military, technological, political and cultural ...
s, the United States and the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
, both initiated ambitious space programs with the intent of demonstrating military, technological, and political dominance. The Soviets launched the
Sputnik 1 Sputnik 1 (; see § Etymology) was the first artificial Earth satellite. It was launched into an elliptical low Earth orbit by the Soviet Union on 4 October 1957 as part of the Soviet space program. It sent a radio signal back to Earth for ...
, the first Earth orbiting satellite, on October 4, 1957. The Americans followed suit with
Explorer 1 Explorer 1 was the first satellite launched by the United States in 1958 and was part of the U.S. participation in the International Geophysical Year (IGY). The mission followed the first two satellites the previous year; the Soviet Union's S ...
on February 1, 1958, by which point the Soviets had already launched the first orbiting animal, Laika in Sputnik 2. Earth's orbit having been reached, focus turned to being the first to the Moon. The
Pioneer program The Pioneer programs were two series of United States lunar and planetary space probes exploration. The first program, which ran from 1958 to 1960, unsuccessfully attempted to send spacecraft to orbit the Moon, successfully sent one spacecraft to ...
of satellites consisted of three unsuccessful lunar attempts in 1958. In early 1959, the Soviet Luna 1 was the first probe to fly by the Moon, followed by
Luna 2 ''Luna 2'' ( rus, Луна 2}), originally named the Second Soviet Cosmic Rocket and nicknamed Lunik 2 in contemporaneous media, was the sixth of the Soviet Union's Luna programme spacecraft launched to the Moon, E-1 No.7. It was the first spa ...
, the first artificial object to impact the Moon. With the Moon achieved, the superpowers turned their eyes to the planets. As the closest planet to Earth,
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never f ...
presented an appealing interplanetary spaceflight target. Every 19 months, Venus and the Earth reach relative positions in their orbits around the Sun such that a minimum of fuel is required to travel from one planet to the other via a Hohmann Transfer Orbit. These opportunities mark the best time to launch exploratory spacecraft, requiring the least fuel to make the trip. The first such opportunity of the Space Race occurred in late 1957, before either superpower had the technology to take advantage of it. The second opportunity, around June 1959, lay just within the edge of technological feasibility, and U.S. Air Force contractor Space Technology Laboratory (STL) intended to take advantage of it. A plan drafted January 1959 involved two spacecraft evolved from the first Pioneer probes, one to be launched via Thor-Able rocket, the other via the yet-untested Atlas-Able. STL was unable to complete the probes before June, and the
launch window In the context of spaceflight, launch period is the collection of days and launch window is the time period on a given day during which a particular rocket must be launched in order to reach its intended target. If the rocket is not launched wi ...
was missed. The Thor-Able probe was repurposed as the deep space explorer Pioneer 5, which was launched March 11, 1960, and designed to maintain communications with Earth up to a distance of as it traveled toward the orbit of Venus. (The Atlas Able probe concept was repurposed as the unsuccessful Pioneer Atlas Moon probes.) No American missions were sent during the early 1961 opportunity. The Soviet Union launched Venera 1 on February 12, 1961, and on May 19–20 became the first probe to fly by Venus; however, it had stopped transmitting on February 26. For the summer 1962 launch opportunity, NASA contracted
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, La Cañada Flintridge, California ...
(JPL) in July 1960 to develop "Mariner A", a spacecraft to be launched using the yet undeveloped Atlas-Centaur. By August 1961, it had become clear that the
Centaur A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as bein ...
would not be ready in time. JPL proposed to NASA that the mission might be accomplished with a lighter spacecraft using the less powerful but operational Atlas-Agena. A hybrid of Mariner A and JPL's Block 1 Ranger lunar explorer, already under development, was suggested. NASA accepted the proposal, and JPL began an 11-month crash program to develop "Mariner R" (so named because it was a Ranger derivative). Mariner 1 would be the first Mariner R to be launched followed by Mariner 2.


Spacecraft

Three Mariner R spacecraft were built: two for launching and one to run tests, which was also to be used as a spare. Aside from its scientific capabilities, Mariner also had to transmit data back to Earth from a distance of more than , and to survive solar radiation twice as intense as that encountered in Earth orbit.


Structure

All three of the Mariner R spacecraft, including Mariner 2, weighed within of the design weight of , of which was devoted to non-experimental systems: maneuvering systems, fuel, and communications equipment for receiving commands and transmitting data. Once fully deployed in space, with its two solar panel "wings" extended, Mariner R was in height and across. The main body of the craft was hexagonal with six separate cases of electronic and electromechanical equipment: *Two of the cases comprised the power system: switchgear that regulated and transmitted power from the 9800
solar cells A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
to the rechargeable 1000 watt silver-zinc storage battery. *Two more included the
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
, the three-
watt The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James ...
transmitter, and control systems for Mariner's experiments. *The fifth case held electronics for
digitizing DigitizationTech Target. (2011, April). Definition: digitization. ''WhatIs.com''. Retrieved December 15, 2021, from https://whatis.techtarget.com/definition/digitization is the process of converting information into a digital (i.e. computer- ...
the analog data received by the experiments for transmission. *The sixth case carried the three
gyroscope A gyroscope (from Ancient Greek γῦρος ''gŷros'', "round" and σκοπέω ''skopéō'', "to look") is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rot ...
s that determined Mariner's orientation in space. It also held the central computer and sequencer, the "brain" of the spacecraft that coordinated all of its activities pursuant to code in its
memory bank A memory bank is a logical unit of storage in electronics, which is hardware-dependent. In a computer, the memory bank may be determined by the memory controller along with physical organization of the hardware memory slots. In a typical synchro ...
s and on a schedule maintained by an electronic clock tuned into equipment on Earth. At the rear of the spacecraft, a monopropellant (anhydrous
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
) 225 N rocket motor was mounted for course corrections. A nitrogen gas fueled stabilizing system of ten jet nozzles controlled by the onboard gyroscopes, Sun sensors, and Earth sensors, kept Mariner properly oriented to receive and transmit data to Earth. The primary high gain parabolic antenna was also mounted on the underside of Mariner and kept pointed toward the Earth. An
omnidirectional antenna In radio communication, an omnidirectional antenna is a class of antenna which radiates equal radio power in all directions perpendicular to an axis (azimuthal directions), with power varying with angle to the axis ( elevation angle), declining ...
atop the spacecraft would broadcast at times that the spacecraft was rolling or tumbling out of its proper orientation, to maintain contact with Earth; as an unfocused antenna, its signal would be much weaker than the primary. Mariner also mounted small antennas on each of the wings to receive commands from ground stations. Temperature control was both passive, involving insulated, and highly reflective components; and active, incorporating
louver A louver (American English) or louvre (British English; see spelling differences) is a window blind or shutter with horizontal slats that are angled to admit light and air, but to keep out rain and direct sunshine. The angle of the sla ...
s to protect the case carrying the onboard computer. At the time the first Mariners were built, no test chamber existed to simulate the near-Venus solar environment, so the efficacy of these cooling techniques could not be tested until the live mission.


Scientific instruments


Background

At the time of the Mariner project's inception, few of Venus' characteristics were definitely known. Its opaque
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A ...
precluded
telescopic A telescope is an instrument designed for the observation of remote objects. Telescope(s) also may refer to: Music * The Telescopes, a British psychedelic band * ''Telescope'' (album), by Circle, 2007 * ''The Telescope'' (album), by Her Space H ...
study of the ground. It was unknown whether there was water beneath the clouds, though a small amount of
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
above them had been detected. The planet's
rotation rate Rotational frequency (also known as rotational speed or rate of rotation) of an object rotating around an axis is the frequency of rotation of the object. Its unit is revolution per minute (rpm), cycle per second (cps), etc. The symbol for ...
was uncertain, though JPL scientists had concluded through
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
observation that Venus rotated very slowly compared to the Earth, advancing the long-standing (but later disproven) hypothesis that the planet was tidally locked with respect to the Sun (as the Moon is with respect to the Earth). No oxygen had been detected in Venus' atmosphere, suggesting that life as existed on Earth was not present. It had been determined that Venus' atmosphere contained at least 500 times as much
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
as the Earth's. These comparatively high levels suggested that the planet might be subject to a runaway
greenhouse effect The greenhouse effect is a process that occurs when energy from a planet's host star goes through the planet's atmosphere and heats the planet's surface, but greenhouse gases in the atmosphere prevent some of the heat from returning directly ...
with surface temperatures as high as , but this had not yet been conclusively determined. The Mariner spacecraft would be able to verify this hypothesis by measuring the temperature of Venus close-up; at the same time, the spacecraft could determine if there was a significant disparity between night and daytime temperatures. An on-board
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
and suite of charged particle detectors could determine if Venus possessed an appreciable magnetic field and an analog to Earth's Van Allen Belts. As the Mariner spacecraft would spend most of its journey to Venus in interplanetary space, the mission also offered an opportunity for long-term measurement of the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
of charged particles and to map the variations in the Sun's
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior d ...
. The concentration of
cosmic dust Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 micrometers). Larger particles are c ...
beyond the vicinity of Earth could be explored as well. Due to the limited capacity of the Atlas Agena, only of the spacecraft could be allocated to scientific experiments.


Instruments

* A two-channel microwave radiometer of the crystal video type operating in the standard Dicke mode of chopping between the main antenna, pointed at the target, and a reference horn pointed at cold space. It was used to determine the absolute temperature of Venus' surface and details concerning its atmosphere through its microwave-radiation characteristics, including the daylight and dark hemispheres, and in the region of the terminator. Measurements were performed simultaneously in two frequency bands of 13.5 mm and 19 mm. The total weight of the radiometer was . Its average power consumption was 4 watts and its peak power consumption 9 watts. * A two-channel
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
radiometer A radiometer or roentgenometer is a device for measuring the radiant flux (power) of electromagnetic radiation. Generally, a radiometer is an infrared radiation detector or an ultraviolet detector. Microwave radiometers operate in the microwave ...
to measure the effective temperatures of small areas of Venus. The radiation that was received could originate from the planetary surface, clouds in the atmosphere, the atmosphere itself or a combination of these. The radiation was received in two spectral ranges: 8 to 9 μm (focused on 8.4 μm) and 10 to 10.8 μm (focused on 10.4 μm). The latter corresponding to the
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
band. The total weight of the infrared radiometer, which was housed in a magnesium casting, was , and it required 2.4 watts of power. It was designed to measure radiation temperatures between approximately . * A three-axis fluxgate magnetometer to measure planetary and interplanetary magnetic fields. Three probes were incorporated in its sensors, so it could obtain three mutually orthogonal components of the field vector. Readings of these components were separated by 1.9 seconds. It had three analog outputs that had each two sensitivity scales: ± 64 γ and ± 320 γ (1 γ = 1  nanotesla). These scales were automatically switched by the instrument. The field that the magnetometer observed was the super-position of a nearly constant spacecraft field and the interplanetary field. Thus, it effectively measured only the changes in the interplanetary field. * An ionization chamber with matched Geiger-Müller tubes (also known as a
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
detector) to measure high-energy cosmic radiation. * A particle detector (implemented through use of an Anton type 213 Geiger-Müller tube) to measure lower radiation (especially near Venus), also known as the Iowa detector, as it was provided by the
University of Iowa The University of Iowa (UI, U of I, UIowa, or simply Iowa) is a public research university in Iowa City, Iowa, United States. Founded in 1847, it is the oldest and largest university in the state. The University of Iowa is organized into 12 co ...
. It was a miniature tube having a 1.2 mg/cm2 mica window about in diameter and weighing about . It detected soft
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s efficiently and
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
inefficiently, and was previously used in Injun 1, Explorer 12 and Explorer 14. It was able to detect protons above 500 keV in energy and electrons above 35 keV. The length of the basic telemetry frame was 887.04 seconds. During each frame, the counting rate of the detector was sampled twice at intervals separated by 37 seconds. The first sampling was the number of counts during an interval of 9.60 seconds (known as the 'long gate'); the second was the number of counts during an interval of 0.827 seconds (known as the 'short gate'). The long gate accumulator overflowed on the 256th count and the short gate accumulator overflowed on the 65,536th count. The maximum counting rate of the tube was 50,000 per second. * A
cosmic dust Cosmic dust, also called extraterrestrial dust, star dust or space dust, is dust which exists in outer space, or has fallen on Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 micrometers). Larger particles are c ...
detector to measure the flux of cosmic dust particles in space. * A solar plasma
spectrometer A spectrometer () is a scientific instrument used to separate and measure spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomenon where the ...
to measure the spectrum of low-energy positively charged particles from the Sun, i.e. the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
. The magnetometer was attached to the top of the mast below the
omnidirectional antenna In radio communication, an omnidirectional antenna is a class of antenna which radiates equal radio power in all directions perpendicular to an axis (azimuthal directions), with power varying with angle to the axis ( elevation angle), declining ...
. Particle detectors were mounted halfway up the mast, along with the cosmic ray detector. The cosmic dust detector and solar plasma spectrometer were attached to the top edges of the spacecraft base. The microwave radiometer, the infrared radiometer and the radiometer reference horns were rigidly mounted to a diameter parabolic radiometer antenna mounted near the bottom of the mast. All instruments were operated throughout the cruise and encounter modes except the radiometers, which were only used in the immediate vicinity of Venus. In addition to these scientific instruments, Mariner 2 had a data conditioning system (DCS) and a scientific power switching (SPS) unit. The DCS was a solid-state electronic system designed to gather information from the scientific instruments on board the spacecraft. It had four basic functions: analog-to-digital conversion, digital-to-digital conversion, sampling and instrument-calibration timing, and planetary acquisition. The SPS unit was designed to perform the following three functions: control of the application of AC power to appropriate portions of the science subsystem, application of power to the radiometers and removal of power from the cruise experiments during radiometer calibration periods, and control of the speed and direction of the radiometer scans. The DCS sent signals to the SPS unit to perform the latter two functions. Not included on any of the Mariner R spacecraft was a camera for visual photos. With payload space at a premium, project scientists considered a camera an unneeded luxury, unable to return useful scientific results.
Carl Sagan Carl Edward Sagan (; ; November 9, 1934December 20, 1996) was an American astronomer, planetary scientist, cosmologist, astrophysicist, astrobiologist, author, and science communicator. His best known scientific contribution is research on ex ...
, one of the Mariner R scientists, unsuccessfully fought for their inclusion, noting that not only might there be breaks in Venus' cloud layer, but "that cameras could also answer questions that we were way too dumb to even pose".


Mission profile


Prelude to Mariner 2

The launch window for Mariner, constrained both by the orbital relationship of Earth and Venus and the limitations of the Atlas Agena, was determined to fall in the 51 day period between from July 22 through September 10. The Mariner flight plan was such that the two operational spacecraft would be launched toward Venus in a 30-day period within this window, taking slightly differing paths such that they both arrived at the target planet within nine days of each other, between the December 8 and 16. Only Cape Canaveral Launch Complex 12 was available for the launching of Atlas-Agena rockets, and it took 24 days to ready an Atlas-Agena for launch. This meant that there was only a 27 day margin for error for a two-launch schedule. Each Mariner would be launched into a parking orbit, whereupon the restartable Agena would fire a second time, sending Mariner on its way to Venus (errors in
trajectory A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete tr ...
would be corrected by a mid-course burn of Mariner's onboard engines). Real-time radar tracking of the Mariner spacecraft while it was in parking orbit and upon its departure the
Atlantic Missile Range The Eastern Range (ER) is an American rocket range (Spaceport) that supports missile and rocket launches from the two major launch heads located at Cape Canaveral Space Force Station and the Kennedy Space Center (KSC), Florida. The rang ...
would provide real-time radar tracking with stations at Ascension and
Pretoria Pretoria () is South Africa's administrative capital, serving as the seat of the executive branch of government, and as the host to all foreign embassies to South Africa. Pretoria straddles the Apies River and extends eastward into the foothi ...
, while
Palomar Observatory Palomar Observatory is an astronomical research observatory in San Diego County, California, United States, in the Palomar Mountain Range. It is owned and operated by the California Institute of Technology (Caltech). Research time at the observat ...
provided optical tracking. Deep space support was provided by three tracking and communications stations at
Goldstone, California The Goldstone Deep Space Communications Complex (GDSCC), commonly called the Goldstone Observatory, is a satellite ground station located in Fort Irwin in the U.S. state of California. Operated by NASA's Jet Propulsion Laboratory (JPL), its m ...
, Woomera, Australia, and
Johannesburg, South Africa Johannesburg ( , , ; Zulu language, Zulu and xh, eGoli ), colloquially known as Jozi, Joburg, or "The City of Gold", is the largest city in South Africa, classified as a Megacity#List of megacities, megacity, and is List of urban areas by p ...
, each separated on the globe by around 120° for continuous coverage. On July 22, 1962, the two-stage Atlas-Agena rocket carrying Mariner 1 veered off-course during its launch due to a defective signal from the Atlas and a bug in the program equations of the ground-based guidance computer; the spacecraft was destroyed by the Range Safety Officer. Two days after that launch, Mariner 2 and its booster (Atlas vehicle 179D) were rolled out to LC-12. The Atlas proved troublesome to prepare for launch, and multiple serious problems with the autopilot occurred, including a complete replacement of the servoamplifier after it had suffered component damage due to shorted transistors.


Launch

At 1:53 AM EST on August 27, Mariner 2 was launched from
Cape Canaveral Air Force Station Cape Canaveral Space Force Station (CCSFS) is an installation of the United States Space Force's Space Launch Delta 45, located on Cape Canaveral in Brevard County, Florida. Headquartered at the nearby Patrick Space Force Base, the statio ...
Launch Complex 12 at 06:53:14 UTC. The bug in the rocket’s software that resulted in the loss of Mariner 1 had not been identified at the time of the launch. In the event the bug caused no issues with the launch since it was in a section of code that was only used when the data-feed from the ground was interrupted and there were no such interruptions during the launch of Mariner 2. The flight proceeded normally up to the point of the Agena booster engine cutoff, at which point the V-2 vernier engine lost pitch and yaw control. The vernier started oscillating and banging against its stops, resulting in a rapid roll of the launch vehicle that came close to threatening the integrity of the stack. At T+189 seconds, the rolling stopped and the launch continued without incident. The rolling motion of the Atlas resulted in ground guidance losing its lock on the booster and preventing any backup commands from being sent to counteract the roll. The incident was traced to a loose electrical connection in the vernier feedback transducer, which was pushed back into place by the centrifugal force of the roll, which also by fortunate coincidence left the Atlas only a few degrees off from where it started and within the range of the Agena's horizontal sensor. As a consequence of this episode, GD/A implemented improved fabrication of wiring harnesses and checkout procedures. Five minutes after liftoff, the Atlas and Agena-Mariner separated, followed by the first Agena burn and second Agena burn. The Agena-Mariner separation injected the Mariner 2 spacecraft into a geocentric escape hyperbola at 26 minutes 3 seconds after liftoff. The NASA NDIF tracking station at Johannesburg, South Africa, acquired the spacecraft about 31 minutes after launch. Solar panel extension was completed approximately 44 minutes after launch. The Sun lock acquired the Sun about 18 minutes later. The high-gain antenna was extended to its acquisition angle of 72°. The output of the solar panels was slightly above the predicted value. As all subsystems were performing normally, with the battery fully charged and the solar panels providing adequate power, the decision was made on August 29 to turn on cruise science experiments. On September 3, the Earth acquisition sequence was initiated, and Earth lock was established 29 minutes later.


Mid-course maneuver

Due to the Atlas-Agena putting Mariner slightly off course, the spacecraft required a mid-course correction, consisting of a roll-turn sequence, followed by a pitch-turn sequence and finally a motor-burn sequence. Preparation commands were sent to the spacecraft at 21:30 UTC on September 4. Initiation of the mid-course maneuver sequence was sent at 22:49:42 UTC and the roll-turn sequence started one hour later. The entire maneuver took approximately 34 minutes. As a result of the mid-course maneuver, the sensors lost their lock with the Sun and Earth. At 00:27:00 UTC the Sun re-acquisition began and at 00:34 UTC the Sun was reacquired. Earth re-acquisition started at 02:07:29 UTC and Earth was reacquired at 02:34 UTC.


Loss of attitude control

On September 8 at 12:50 UTC, the spacecraft experienced a problem with
attitude control Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle ...
. It automatically turned on the gyros, and the cruise science experiments were automatically turned off. The exact cause is unknown as attitude sensors went back to normal before telemetry measurements could be sampled, but it may have been an Earth-sensor malfunction or a collision with a small unidentified object which temporarily caused the spacecraft to lose Sun lock. A similar experience happened on September 29 at 14:34 UTC. Again, all sensors went back to normal before it could be determined which axis had lost lock. By this date, the Earth sensor brightness indication had essentially gone to zero. This time, however, telemetry data indicated that the Earth-brightness measurement had increased to the nominal value for that point in the trajectory.


Solar panel output

On October 31, the output from one solar panel (with solar sail attached) deteriorated abruptly. It was diagnosed as a partial short circuit in the panel. As a precaution, the cruise science instruments were turned off. A week later, the panel resumed normal function, and cruise science instruments were turned back on. The panel permanently failed on November 15, but Mariner 2 was close enough to the Sun that one panel could supply adequate power; thus, the cruise science experiments were left active.


Encounter with Venus

Mariner 2 was the first spacecraft to successfully encounter another planet, passing as close as to Venus after 110 days of flight on December 14, 1962.


Post encounter

After encounter, cruise mode resumed. Spacecraft perihelion occurred on December 27 at a distance of . The last transmission from Mariner 2 was received on January 3, 1963, at 07:00 UTC, making the total time from launch to termination of the Mariner 2 mission 129 days. Mariner 2 remains in
heliocentric orbit A heliocentric orbit (also called circumsolar orbit) is an orbit around the barycenter of the Solar System, which is usually located within or very near the surface of the Sun. All planets, comets, and asteroids in the Solar System, and the Sun ...
.


Results

The data produced during the flight consisted of two categories--''viz.'', tracking data and telemetry data. One particularly noteworthy piece of data gathered during the pioneering fly-by was the high temperature of the atmosphere, measured to be . Various properties of the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
were also measured for the first time.


Scientific observations

The microwave radiometer made three scans of Venus in 35 minutes on December 14, 1962, starting at 18:59 UTC. The first scan was made on the dark side, the second was near the terminator, and the third was located on the light side. The scans with the 19 mm band revealed peak temperatures of on the dark side, 595 ± 12 K near the terminator, and 511 ± 14 K on the light side. It was concluded that there is no significant difference in temperature across Venus. However, the results suggest a limb darkening, an effect which presents cooler temperatures near the edge of the planetary disk and higher temperatures near the center. This was evidence for the theory that the Venusian surface was extremely hot and the atmosphere optically thick. The infrared radiometer showed that the 8.4 μm and 10.4 μm radiation temperatures were in agreement with radiation temperatures obtained from Earth-based measurements. There was no systematic difference between the temperatures measured on the light side and dark side of the planet, which was also in agreement with Earth-based measurements. The limb darkening effect that the microwave radiometer detected was also present in the measurements by both channels of the infrared radiometer. The effect was only slightly present in the 10.4 μm channel but was more pronounced in the 8.4 μm channel. The 8.4 μm channel also showed a slight phase effect. The phase effect indicated that if a greenhouse effect existed, heat was transported in an efficient manner from the light side to the dark side of the planet. The 8.4 μm and 10.4 μm showed equal radiation temperatures, indicating that the limb darkening effect would appear to come from a cloud structure rather than the atmosphere. Thus, if the measured temperatures were actually cloud temperatures instead of surface temperatures, then these clouds would have to be quite thick. The magnetometer detected a persistent interplanetary magnetic field varying between 2 γ and 10 γ ( nanotesla), which agrees with prior Pioneer 5 observations from 1960. This also means that interplanetary space is rarely empty or field-free. The magnetometer could detect changes of about 4 γ on any of the axes, but no trends above 10 γ were detected near Venus, nor were fluctuations seen like those that appear at Earth's magnetospheric termination. This means that Mariner 2 found no detectable magnetic field near Venus, although that didn't necessarily mean that Venus had none. However, if Venus had a magnetic field, then it would have to be at least smaller than 1/10 the magnetic field of the Earth. In 1980, the
Pioneer Venus Orbiter The Pioneer Venus Orbiter, also known as Pioneer Venus 1 or Pioneer 12, was a mission to Venus conducted by the United States as part of the Pioneer Venus project. Launched in May 1978 atop an Atlas-Centaur rocket, the spacecraft was inserted into ...
indeed showed that Venus has a small weak magnetic field. The Anton type 213 Geiger-Müller tube performed as expected. The average rate was 0.6 counts per second. Increases in its counting rate were larger and more frequent than for the two larger tubes, since it was more sensitive to particles of lower energy. It detected 7 small solar bursts of radiation during September and October and 2 during November and December. The absence of a detectable magnetosphere was also confirmed by the tube; it detected no radiation belt at Venus similar to that of Earth. The count rate would have increased by 104, but no change was measured. It was also shown that in interplanetary space, the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
streams continuously, confirming a prediction by
Eugene Parker Eugene Newman Parker (June 10, 1927 – March 15, 2022) was an American solar and plasma physicist. In the 1950s he proposed the existence of the solar wind and that the magnetic field in the outer Solar System would be in the shape of a Pa ...
, and the cosmic dust density is much lower than the near-Earth region. Improved estimates of Venus' mass and the value of the Astronomical Unit were made. Also, research, which was later confirmed by Earth-based radar and other explorations, suggested that Venus rotates very slowly and in a direction opposite that of the Earth.


See also

* List of missions to Venus *
Microwave Radiometer (Juno) Microwave Radiometer (MWR) is an instrument on the ''Juno'' orbiter sent to planet Jupiter. MWR is a multi-wavelength microwave radiometer for making observations of Jupiter's deep atmosphere. MWR can observe radiation from 1.37 to 50 c ...
, another microwave radiometer used in the 2010s on Jupiter


References


External links


Mariner 2 Mission Profile
b
NASA's Solar System Exploration

Full-scale engineering prototype of Mariner 2 in the Smithsonian Air and Space Museum, Washington, D.C.

Mariner 2
{{Orbital launches in 1962 Derelict satellites in heliocentric orbit Mariner program Missions to Venus Spacecraft launched in 1962 Derelict space probes Spacecraft launched by Atlas-Agena rockets Articles containing video clips de:Mariner#Mariner 1 und 2