HOME

TheInfoList



OR:

In
geophysics Geophysics () is a subject of natural science concerned with the physical processes and physical properties of the Earth and its surrounding space environment, and the use of quantitative methods for their analysis. The term ''geophysics'' so ...
, a magnetic anomaly is a local variation in the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magneti ...
resulting from variations in the chemistry or magnetism of the rocks. Mapping of variation over an area is valuable in detecting structures obscured by overlying material. The magnetic variation (
geomagnetic reversals A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged (not to be confused with geographic north and geographic south). The Earth's field has alternated b ...
) in successive bands of ocean floor parallel with
mid-ocean ridge A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics. It typically has a depth of about and rises about above the deepest portion of an ocean basin. This feature is where seafloor spreading takes place along a div ...
s was important evidence for
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener a ...
, a concept central to the theory of
plate tectonics Plate tectonics (from the la, label= Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of larg ...
.


Measurement

Magnetic anomalies are generally a small fraction of the magnetic field. The total field ranges from 25,000 to 65,000 
nanotesla The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre. The unit was announced during the General Conferenc ...
s (nT). To measure anomalies,
magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
s need a sensitivity of 10 nT or less. There are three main types of magnetometer used to measure magnetic anomalies: # The
fluxgate magnetometer A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, o ...
was developed during World War II to detect submarines. It measures the component along a particular axis of the sensor, so it needs to be oriented. On land, it is often oriented vertically, while in aircraft, ships and satellites it is usually oriented so the axis is in the direction of the field. It measures the magnetic field continuously, but drifts over time. One way to correct for drift is to take repeated measurements at the same place during the survey. # The
proton precession magnetometer A proton magnetometer, also known as a proton precession magnetometer (PPM), uses the principle of Earth's field nuclear magnetic resonance (EFNMR) to measure very small variations in the Earth's magnetic field, allowing ferrous objects on land ...
measures the strength of the field but not its direction, so it does not need to be oriented. Each measurement takes a second or more. It is used in most ground surveys except for boreholes and high-resolution gradiometer surveys. # Optically pumped magnetometers, which use alkali gases (most commonly
rubidium Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher ...
and
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
) have high sample rates and sensitivities of 0.001 nT or less, but are more expensive than the other types of magnetometers. They are used on satellites and in most
aeromagnetic survey An aeromagnetic survey is a common type of geophysical survey carried out using a magnetometer aboard or towed behind an aircraft. The principle is similar to a magnetic survey carried out with a hand-held magnetometer, but allows much larger ar ...
s.


Data acquisition


Ground-based

In ground-based surveys, measurements are made at a series of stations, typically 15 to 60 m apart. Usually a proton precession magnetometer is used and it is often mounted on a pole. Raising the magnetometer reduces the influence of small ferrous objects that were discarded by humans. To further reduce unwanted signals, the surveyors do not carry metallic objects such as keys, knives or compasses, and objects such as motor vehicles, railway lines, and barbed wire fences are avoided. If some such contaminant is overlooked, it may show up as a sharp spike in the anomaly, so such features are treated with suspicion. The main application for ground-based surveys is the detailed search for minerals.


Aeromagnetic

Airborne magnetic surveys are often used in oil surveys to provide preliminary information for seismic surveys. In some countries such as Canada, government agencies have made systematic surveys of large areas. The survey generally involves making a series of parallel runs at a constant height and with intervals of anywhere from a hundred meters to several kilometers. These are crossed by occasional tie lines, perpendicular to the main survey, to check for errors. The plane is a source of magnetism, so sensors are either mounted on a boom (as in the figure) or towed behind on a cable. Aeromagnetic surveys have a lower spatial resolution than ground surveys, but this can be an advantage for a regional survey of deeper rocks.


Shipborne

In shipborne surveys, a magnetometer is towed a few hundred meters behind a ship in a device called a ''fish''. The sensor is kept at a constant depth of about 15 m. Otherwise, the procedure is similar to that used in aeromagnetic surveys.


Spacecraft

Sputnik 3 Sputnik 3 (russian: Спутник-3, Satellite 3) was a Soviet satellite launched on 15 May 1958 from Baikonur Cosmodrome by a modified R-7/SS-6 ICBM. The scientific satellite carried a large array of instruments for geophysical research of ...
in 1958 was the first spacecraft to carry a magnetometer. In the autumn of 1979,
Magsat Magsat (Magnetic field Satellite, Applications Explorer Mission-C or AEM-C or Explorer 61) was a NASA/USGS (United States Geological Survey) spacecraft, launched on 30 October 1979. The mission was to map the Earth's magnetic field, the satelli ...
was launched and jointly operated by
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
and
USGS The United States Geological Survey (USGS), formerly simply known as the Geological Survey, is a scientific agency of the United States government. The scientists of the USGS study the landscape of the United States, its natural resources, ...
until the spring of 1980. It had a
caesium Caesium (IUPAC spelling) (or cesium in American English) is a chemical element with the symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only five elemental metals that a ...
vapor scalar magnetometer and a fluxgate vector magnetometer. CHAMP, a German satellite, made precise gravity and magnetic measurements from 2001 to 2010. A Danish satellite, Ørsted, was launched in 1999 and is still in operation, while the
Swarm Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving ''en masse'' or migrating in some direction. ...
mission of the
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (120 ...
involves a "constellation" of three satellites that were launched in November, 2013.


Data reduction

There are two main corrections that are needed for magnetic measurements. The first is removing short-term variations in the field from external sources; e.g., ''diurnal variations'' that have a period of 24 hours and magnitudes of up to 30 nT, probably from the action of the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
on the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays ...
. In addition,
magnetic storm A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave and/or cloud of magnetic field that interacts with the Earth's magnetic field. The disturbance that d ...
s can have peak magnitudes of 1000 nT and can last for several days. Their contribution can be measured by returning to a base station repeatedly or by having another magnetometer that periodically measures the field at a fixed location. Second, since the anomaly is the local contribution to the magnetic field, the main geomagnetic field must be subtracted from it. The
International Geomagnetic Reference Field The International Geomagnetic Reference Field (IGRF) is a standard mathematical description of the large-scale structure of the Earth's main magnetic field and its secular variation. It was created by fitting parameters of a mathematical model of ...
is usually used for this purpose. This is a large-scale, time-averaged mathematical model of the Earth's field based on measurements from satellites, magnetic observatories and other surveys. Some corrections that are needed for
gravity anomalies The gravity anomaly at a location on the Earth's surface is the difference between the observed value of gravity and the value predicted by a theoretical model. If the Earth were an ideal oblate spheroid of uniform density, then the gravity meas ...
are less important for magnetic anomalies. For example, the vertical gradient of the magnetic field is 0.03 nT/m or less, so an elevation correction is generally not needed.


Interpretation


Theoretical background

The magnetization in the surveyed rock is the vector sum of induced and
remanent magnetization Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed. Colloquially, when a magnet is "magnetized", it has remanence. The ...
: : \mathbf = \mathbf_\text + \mathbf_\text. The induced magnetization of many minerals is the product of the ambient magnetic field and their
magnetic susceptibility In electromagnetism, the magnetic susceptibility (Latin: , "receptive"; denoted ) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization (magnetic moment per unit volume) to the ap ...
: : \mathbf_\text = \chi \mathbf. Some susceptibilities are given in the table. Minerals that are
diamagnetic Diamagnetic materials are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagnetic materials are attracted ...
or
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, ...
only have an induced magnetization.
Ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
minerals such as
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula Fe2+Fe3+2O4. It is one of the oxides of iron, and is ferrimagnetic; it is attracted to a magnet and can be magnetized to become a permanent magnet itself. With ...
also can carry a remanent magnetization or remanence. This remanence can last for millions of years, so it may be in a completely different direction from the present Earth's field. If a remanence is present, it is difficult to separate from the induced magnetization unless samples of the rock are measured. The ratio of the magnitudes, , is called the Koenigsberger ratio.


Magnetic anomaly modeling

Interpretation of magnetic anomalies is usually done by matching observed and modeled values of the anomalous magnetic field. An algorithm developed by Talwani and Heirtzler(1964) (and further elaborated by Kravchinsky, 2019) treats both induced and remnant magnetizations as vectors and allows theoretical estimation of the remnant magnetization from the existing apparent polar wander paths for different tectonic units or continents.


Applications


Ocean floor stripes

Magnetic surveys over the oceans have revealed a characteristic pattern of anomalies around mid-ocean ridges. They involve a series of positive and negative anomalies in the intensity of the magnetic field, forming stripes running parallel to each ridge. They are often symmetric about the axis of the ridge. The stripes are generally tens of kilometers wide, and the anomalies are a few hundred nanoteslas. The source of these anomalies is primarily permanent magnetization carried by titanomagnetite minerals in
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
and
gabbro Gabbro () is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is ...
s. They are magnetized when ocean crust is formed at the ridge. As
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natura ...
rises to the surface and cools, the rock acquires a
thermoremanent magnetization When an igneous rock cools, it acquires a thermoremanent magnetization (TRM) from the Earth's field. TRM can be much larger than it would be if exposed to the same field at room temperature (see isothermal remanence). This remanence can also be ver ...
in the direction of the field. Then the rock is carried away from the ridge by the motions of the
tectonic plate Plate tectonics (from the la, label=Late Latin, tectonicus, from the grc, τεκτονικός, lit=pertaining to building) is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large te ...
s. Every few hundred thousand years, the direction of the magnetic field reverses. Thus, the pattern of stripes is a global phenomenon and can be used to calculate the velocity of
seafloor spreading Seafloor spreading or Seafloor spread is a process that occurs at mid-ocean ridges, where new oceanic crust is formed through volcanic activity and then gradually moves away from the ridge. History of study Earlier theories by Alfred Wegener a ...
.


In fiction

In the ''
Space Odyssey The ''Space Odyssey'' series is a series of science fiction novels by the writer Arthur C. Clarke. Two of the novels have been made into feature films, released in 1968 and 1984 respectively. Two of Clarke's early short stories may also be co ...
'' series by
Arthur C. Clarke Sir Arthur Charles Clarke (16 December 191719 March 2008) was an English science-fiction writer, science writer, futurist, inventor, undersea explorer, and television series host. He co-wrote the screenplay for the 1968 film '' 2001: A Spac ...
, a series of
monoliths A monolith is a geological feature consisting of a single massive stone or rock, such as some mountains. For instance, Savandurga mountain is a monolith mountain in India. Erosion usually exposes the geological formations, which are often ma ...
are left by extraterrestrials for humans to find. One near the crater Tycho is found by its unnaturally powerful magnetic field and named ''Tycho Magnetic Anomaly 1'' (TMA-1). One orbiting Jupiter is named TMA-2, and one in the
Olduvai Gorge The Olduvai Gorge or Oldupai Gorge in Tanzania is one of the most important paleoanthropological localities in the world; the many sites exposed by the gorge have proven invaluable in furthering understanding of early human evolution. A steep-si ...
is found in 2513 and retroactively named TMA-0 because it was first encountered by primitive humans.


See also

*
Bangui magnetic anomaly The Bangui magnetic anomaly is a local variation in the Earth's magnetic field centered at Bangui, the capital of Central African Republic. The magnetic anomaly is roughly elliptical, about , and covers most of the country, making it one of the ...
*
Geomagnetic reversal A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged (not to be confused with geographic north and geographic south). The Earth's field has alternate ...
*
Kursk Magnetic Anomaly Kursk Magnetic Anomaly (russian: Курская магнитная аномалия) is a territory rich in iron ores located within the Kursk, Belgorod, and Voronezh oblasts in Russia, and constitutes a significant part of the Central Chernozy ...
*
Magnetic anomaly detector A magnetic anomaly detector (MAD) is an instrument used to detect minute variations in the Earth's magnetic field. The term refers specifically to magnetometers used by military forces to detect submarines (a mass of ferromagnetic material c ...
*
South Atlantic Anomaly The South Atlantic Anomaly (SAA) is an area where Earth's inner Van Allen radiation belt comes closest to Earth's surface, dipping down to an altitude of . This leads to an increased flux of energetic particles in this region and exposes orbiti ...
*
Temagami Magnetic Anomaly The Temagami Magnetic Anomaly, also called the Temagami Anomaly or the Wanapitei Anomaly, is a magnetic anomaly resulting from a large buried geologic structure in the Canadian Shield near Temagami, Ontario, Canada. It stretches from Lake Wanapit ...
* World Digital Magnetic Anomaly Map (WDMAM) * Enhanced Magnetic Model (EMM)


References


Further reading

* * * * *


External links


Magnetic field of the lithosphere
(CIRES)
Magnetic anomaly maps and data for North America
(USGS)
Magnetic anomaly map of the worldAsteroids may have delivered magnetic material to the Moon
{{DEFAULTSORT:Magnetic Anomaly Geomagnetism