HOME

TheInfoList



OR:

In mathematics, the Moore determinant is a
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if ...
defined for
Hermitian matrices In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th ...
over a
quaternion algebra In mathematics, a quaternion algebra over a field ''F'' is a central simple algebra ''A'' over ''F''See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2. that has dimension 4 over ''F''. Every quaternion algebra becomes a ...
, introduced by .


See also

*
Dieudonné determinant In linear algebra, the Dieudonné determinant is a generalization of the determinant of a matrix to matrices over division rings and local rings. It was introduced by . If ''K'' is a division ring, then the Dieudonné determinant is a homomorphism ...


References

* Matrices {{matrix-stub