In
mathematics the monomial basis of a
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
is its
basis (as a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but ...
or
free module
In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fie ...
over the
field or
ring of
coefficient
In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves ...
s) that consists of all
monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
# A monomial, also called power product, is a product of powers of variables with nonnegative integer expon ...
s. The monomials form a basis because every
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
may be uniquely written as a finite
linear combination of monomials (this is an immediate consequence of the definition of a polynomial).
One indeterminate
The
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
of
univariate polynomials over a field is a -vector space, which has
as an (infinite) basis. More generally, if is a
ring then is a
free module
In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fie ...
which has the same basis.
The polynomials of
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathemati ...
at most form also a vector space (or a free module in the case of a ring of coefficients), which has
as a basis.
The canonical form of a polynomial is its expression on this basis:
or, using the shorter
sigma notation
In mathematics, summation is the addition of a sequence of any kind of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matr ...
:
The monomial basis is naturally
totally ordered
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X:
# a \leq a ( reflexiv ...
, either by increasing degrees
or by decreasing degrees
Several indeterminates
In the case of several indeterminates
a
monomial
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:
# A monomial, also called power product, is a product of powers of variables with nonnegative integer expon ...
is a product
where the
are non-negative
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s. As
an exponent equal to zero means that the corresponding indeterminate does not appear in the monomial; in particular
is a monomial.
Similar to the case of univariate polynomials, the polynomials in
form a vector space (if the coefficients belong to a field) or a free module (if the coefficients belong to a ring), which has the set of all monomials as a basis, called the monomial basis.
The
homogeneous polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; ...
s of degree
form a
subspace which has the monomials of degree
as a basis. The
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
of this subspace is the number of monomials of degree
, which is
where
is a
binomial coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
.
The polynomials of degree at most
form also a subspace, which has the monomials of degree at most
as a basis. The number of these monomials is the dimension of this subspace, equal to
In contrast to the univariate case, there is no natural
total order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X:
# a \leq a ( reflexiv ...
of the monomial basis in the multivariate case. For problems which require choosing a total order, such as
Gröbner basis
In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring over a field . A Grö ...
computations, one generally chooses an ''admissible''
monomial order – that is, a total order on the set of monomials such that