HOME

TheInfoList



OR:

In
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
, the monadic predicate calculus (also called monadic first-order logic) is the fragment of
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
in which all relation symbols in the
signature A signature (; from , "to sign") is a depiction of someone's name, nickname, or even a simple "X" or other mark that a person writes on documents as a proof of identity and intent. Signatures are often, but not always, Handwriting, handwritt ...
are monadic (that is, they take only one argument), and there are no function symbols. All
atomic formula In mathematical logic, an atomic formula (also known as an atom or a prime formula) is a formula with no deeper propositional structure, that is, a formula that contains no logical connectives or equivalently a formula that has no strict subformu ...
s are thus of the form P(x), where P is a relation symbol and x is a variable. Monadic predicate calculus can be contrasted with polyadic predicate calculus, which allows relation symbols that take two or more arguments.


Expressiveness

The absence of polyadic relation symbols severely restricts what can be expressed in the monadic predicate calculus. It is so weak that, unlike the full predicate calculus, it is decidable—there is a
decision procedure Decision may refer to: Law and politics *Judgment (law), as the outcome of a legal case * Landmark decision, the outcome of a case that sets a legal precedent * ''Per curiam'' decision, by a court with multiple judges Books * ''Decision'' (novel ...
that determines whether a given formula of monadic predicate calculus is logically valid (true for all nonempty domains). Löwenheim, L. (1915) "Über Möglichkeiten im Relativkalkül," ''Mathematische Annalen'' 76: 447-470. Translated as "On possibilities in the calculus of relatives" in Jean van Heijenoort, 1967. ''A Source Book in Mathematical Logic'', 1879-1931. Harvard Univ. Press: 228-51. Adding a single binary relation symbol to monadic logic, however, results in an undecidable logic.


Relationship with term logic

The need to go beyond monadic logic was not appreciated until the work on the logic of
relation Relation or relations may refer to: General uses * International relations, the study of interconnection of politics, economics, and law on a global level * Interpersonal relationship, association or acquaintance between two or more people * ...
s, by
Augustus De Morgan Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician. He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the ...
and
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss (philosopher), Paul ...
in the nineteenth century, and by
Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
in his 1879 ''
Begriffsschrift ''Begriffsschrift'' (German for, roughly, "concept-writing") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book. ''Begriffsschrift'' is usually translated as ''concept writing'' or ''concept notati ...
''. Prior to the work of these three,
term logic In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by ...
(syllogistic logic) was widely considered adequate for formal deductive reasoning. Inferences in term logic can all be represented in the monadic predicate calculus. For example the argument : All dogs are mammals. : No mammal is a bird. : Thus, no dog is a bird. can be notated in the language of monadic predicate calculus as : \forall x\,D(x)\Rightarrow M(x))\land \neg(\exists y\,M(y)\land B(y))\Rightarrow \neg(\exists z\,D(z)\land B(z)) where D, M and B denote the predicates of being, respectively, a dog, a mammal, and a bird. Conversely, monadic predicate calculus is not significantly more expressive than term logic. Each formula in the monadic predicate calculus is
equivalent Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry *Equivalence class (music) *'' Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *'' Equiva ...
to a formula in which quantifiers appear only in closed subformulas of the form :\forall x\,P_1(x)\lor\cdots\lor P_n(x)\lor\neg P'_1(x)\lor\cdots\lor \neg P'_m(x) or :\exists x\,\neg P_1(x)\land\cdots\land\neg P_n(x)\land P'_1(x)\land\cdots\land P'_m(x), These formulas slightly generalize the basic judgements considered in term logic. For example, this form allows statements such as "''Every mammal is either a herbivore or a carnivore (or both)''", (\forall x\,\neg M(x)\lor H(x)\lor C(x)). Reasoning about such statements can, however, still be handled within the framework of term logic, although not by the 19 classical Aristotelian
syllogism A syllogism (, ''syllogismos'', 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defin ...
s alone. Taking
propositional logic The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contra ...
as given, every formula in the monadic predicate calculus expresses something that can likewise be formulated in term logic. On the other hand, a modern view of the problem of multiple generality in traditional logic concludes that quantifiers cannot nest usefully if there are no polyadic predicates to relate the bound variables.


Variants

The formal system described above is sometimes called the pure monadic predicate calculus, where "pure" signifies the absence of function symbols. Allowing monadic function symbols changes the logic only superficially, whereas admitting even a single binary function symbol results in an undecidable logic.
Monadic second-order logic In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. It is particularly important in the logic of graphs, because of Courcelle's ...
allows predicates of higher
arity In logic, mathematics, and computer science, arity () is the number of arguments or operands taken by a function, operation or relation. In mathematics, arity may also be called rank, but this word can have many other meanings. In logic and ...
in formulas, but restricts second-order quantification to unary predicates, i.e. the only second-order variables allowed are subset variables.


Footnotes

{{Mathematical logic Predicate logic Logical calculi