Molecular replacement (MR) is a method of solving the
phase problem
In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography, where the phase problem has to be solved for the de ...
in
X-ray crystallography
X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
. MR relies upon the existence of a previously solved protein structure which is similar to our unknown structure from which the diffraction data is derived. This could come from a
homologous protein, or from the lower-resolution
protein NMR
Nuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and ...
structure of the same protein.
The first goal of the crystallographer is to obtain an electron density map, density being related with diffracted wave as follows:
:
With usual detectors the intensity
is being measured, and all the information about phase (
) is lost. Then, in the absence of phases (Φ), we are unable to complete the shown
Fourier transform
In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
relating the experimental data from
X-ray crystallography
X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
(in
reciprocal space
Reciprocal lattice is a concept associated with solids with translational symmetry which plays a major role in many areas such as X-ray diffraction, X-ray and Electron diffraction, electron diffraction as well as the Electronic band structure, e ...
) to real-space electron density, into which the atomic model is built. MR tries to find the model which fits best experimental intensities among known structures.
Principles of Patterson-based molecular replacement
We can derive a
Patterson map for the intensities, which is an interatomic vector map created by squaring the structure factor amplitudes and setting all phases to zero. This vector map contains a peak for each atom related to every other atom, with a large peak at 0,0,0, where vectors relating atoms to themselves "pile up". Such a map is far too noisy to derive any high resolution structural information—however if we generate Patterson maps for the data derived from our unknown structure, and from the structure of a previously solved homologue, in the correct orientation and position within the
unit cell
In geometry, biology, mineralogy and solid state physics, a unit cell is a repeating unit formed by the vectors spanning the points of a lattice. Despite its suggestive name, the unit cell (unlike a unit vector
In mathematics, a unit vector i ...
, the two Patterson maps should be closely correlated. This principle lies at the heart of MR, and can allow us to infer information about the orientation and location of an unknown molecule with its unit cell.
Due to historic limitations in computing power, an MR search is typically divided into two steps:
rotation
Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
and
translation
Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
.
Rotation function
In the rotation function, our unknown Patterson map is compared to Patterson maps derived from our known homologue structure in different orientations. Historically
r-factors and/or
correlation coefficients were used to score the rotation function, however, modern programs use
maximum likelihood
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data. This is achieved by maximizing a likelihood function so that, under the assumed stati ...
-based algorithms. The highest correlation (and therefore scores) are obtained when the two structures (known and unknown) are in similar orientation(s)—these can then be output in
Euler angles
The Euler angles are three angles introduced by Leonhard Euler to describe the Orientation (geometry), orientation of a rigid body with respect to a fixed coordinate system.Novi Commentarii academiae scientiarum Petropolitanae 20, 1776, pp. 189� ...
or
spherical polar angles.
Translation function
In the translation function, the now correctly oriented known model can be correctly positioned by translating it to the correct co-ordinates within the asymmetric unit. This is accomplished by moving the model, calculating a new Patterson map, and comparing it to the unknown-derived Patterson map. This brute-force search is computationally expensive and fast translation functions are now more commonly used. Positions with high correlations are output in
Cartesian coordinates
In geometry, a Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called ''coordinates'', which are the signed distances to the point from two fixed perpendicular o ...
.
Using ''de novo'' predicted structures in molecular replacement
With the improvement of ''de novo''
protein structure prediction
Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its Protein secondary structure, secondary and Protein tertiary structure, tertiary structure ...
, many protocols including MR-Rosetta, QUARK, AWSEM-Suite and I-TASSER-MR can generate a lot of native-like decoy structures that are useful to solve the
phase problem
In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography, where the phase problem has to be solved for the de ...
by molecular replacement.
The next step
Following this, we should have correctly oriented and translated phasing models, from which we can derive phases which are (hopefully) accurate enough to derive electron density maps. These can be used to build and refine an atomic model of our unknown structure.
References
External links
Phaser– One of the most commonly used molecular replacement programmes.
– Molecular replacement package within
CCP4
Phaser articlea
PDBe– A helpful public domain introduction to the topic.
{{Crystallography
X-ray crystallography