Molecular Operating Environment
   HOME

TheInfoList



OR:

Molecular Operating Environment (MOE) is a drug discovery software platform that integrates visualization, modeling and simulations, as well as methodology development, in one package. MOE scientific applications are used by biologists, medicinal chemists and computational chemists in pharmaceutical, biotechnology and academic research. MOE runs on Windows, Linux, Unix, and macOS. Main application areas in MOE include structure-based design, fragment-based design, ligand-based design,
pharmacophore 300px, An example of a pharmacophore model In medicinal chemistry and molecular biology, a pharmacophore is an abstract description of molecular features that are necessary for molecular recognition of a ligand by a biological macromolecule. IUPAC ...
discovery, medicinal chemistry applications, biologics applications, structural biology and bioinformatics, protein and
antibody An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as pathogenic bacteria, bacteria and viruses, includin ...
modeling,
molecular modeling Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. The methods are used in the fields of computational chemistry, drug design, computational biology and materials scienc ...
and simulations, virtual screening,
cheminformatics Cheminformatics (also known as chemoinformatics) refers to the use of physical chemistry theory with computer and information science techniques—so called "'' in silico''" techniques—in application to a range of descriptive and prescriptive ...
& QSAR. The Scientific Vector Language ( SVL) is the built-in command, scripting and application development language of MOE.


History

The Molecular Operating Environment was developed by the
Chemical Computing Group Chemical Computing Group is a software company specializing in research software for computational chemistry, bioinformatics, cheminformatics, docking, pharmacophore searching and molecular simulation. The company's main customer base consist ...
under the supervision of President/CEO Paul Labute. Founded in 1994 and based in Montreal, Quebec, Canada, this private company is dedicated to developing computation software that will challenge, revolutionize, and aid in the scientific methodology. The Chemical Computing Group contains a team of mathematicians, scientists, and software engineers constantly altering and updating MOE in order to improve the fields of theoretical/computational chemistry and biology, molecular modeling, and computer-driven molecular design. Researchers specializing in pharmaceutics (drug-discovery); computational chemistry; biotechnology; bioinformatics; cheminformatics; molecular dynamics, simulations, and modeling are the main clients of the Chemical Computing Group.


Software

As discussed before, MOE is a versatile software with main applications in 3D molecular visualization; structure-based protein-ligand design; antibody and biologics design, structure-based protein engineering; SAR and SPR visualization; ligand-based design; protein,
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
/
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
modeling;
virtual screening Virtual screening (VS) is a computational technique used in drug discovery to search libraries of small molecules in order to identify those structures which are most likely to bind to a drug target, typically a protein receptor (biochemistry), r ...
; 3D pharmacophore screening; fragment-based discovery; structural
bioinformatics Bioinformatics () is an interdisciplinary field of science that develops methods and Bioinformatics software, software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, ...
; molecular mechanics and dynamics;
peptide Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty am ...
modeling;
structural biology Structural biology deals with structural analysis of living material (formed, composed of, and/or maintained and refined by living cells) at every level of organization. Early structural biologists throughout the 19th and early 20th centuries we ...
; cheminformatics and QSAR.


Molecular Modeling and Simulations

Molecular modeling and simulations is a process often used in computational chemistry, but there is wide application for researchers in a variety of fields. This theoretical approach allows scientists to extensively study the properties of molecules, and using the data can provide insight into how these molecules may behave in biological and/or chemical systems. This information is vital to the design of new materials and chemicals.


Molecular Docking

Molecular docking In the field of molecular modeling, docking is a method which predicts the preferred orientation of one molecule to a second when a ligand and a target are bound to each other to form a stable complex. Knowledge of the preferred orientation in t ...
is a computation study used to primarily analyze the binding affinity of a
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
and a
receptor Receptor may refer to: * Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and respond ...
. Often times, proteins are studied using this technique, because data from molecular docking allows scientists to predict if a ligand will bind to a specific molecule and if so, how strongly. Molecular docking can be used to predict the binding mode of already known ligands and/or novel ligands, and as a binding affinity predictive instrument.
Binding affinity In biochemistry and pharmacology, a ligand is a substance that forms a complex with a biomolecule to serve a biological purpose. The etymology stems from Latin ''ligare'', which means 'to bind'. In protein-ligand binding, the ligand is usuall ...
is measured by the change in energy and the more negative the energy, the more stable the complex and the tighter the ligand binds to the receptor. Data from molecular docking can be used to construct new compounds that are more or less efficient at binding to a specific molecule. Molecular docking is extensively used throughout drug discovery for these reasons. Preparing for molecular docking studies can involve many steps. When docking proteins, proteins are obtained from the
Protein Data Bank The Protein Data Bank (PDB) is a database for the three-dimensional structural data of large biological molecules such as proteins and nucleic acids, which is overseen by the Worldwide Protein Data Bank (wwPDB). This structural data is obtained a ...
(PDB), which is an online, open access resources containing the classification, structure/folding, organism, sequence length, mutations, genome, sequence, and other data relating to proteins. The structure of a protein can precisely be determined through a process known as
X-ray crystallography X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to Diffraction, diffract in specific directions. By measuring th ...
. This process involves a concentrated beam of
X-ray An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
s that is directed at a crystal. When X-rays are projected to a crystal structure, the crystal diffracts the X-rays in specific directions. These directions allow scientists to map and determine the detailed structure of proteins, which is then recorded and uploaded to the PDB.


Methods

The protein structure file is downloaded from the PDB and opened in a molecular docking software. There are many programs that can facilitate molecular docking such as AutoDock, DOCK, FlexX, HYDRO, LIGPLOT, SPROUT, STALK, and Molegro Virtual Docker. Alternatively, some protein structures have not been experimentally determined through the use of X-ray crystallography and therefore, are not found on the PDB. In order to produce a protein molecule that can be used for docking, scientists can use the amino acid sequence of a protein and a program named
UniProt UniProt is a freely accessible database of protein sequence and functional information, many entries being derived from genome sequencing projects. It contains a large amount of information about the biological function of proteins derived fro ...
to find protein structures in the PDB that have similar amino acid sequences. The amino acid sequence of the protein that is being constructed is then used in combination with the protein structure found in the PDB with the highest percent similarity (template protein) in order to create the target protein used in docking. Although this method does not produce an exact model of the target protein, it allows scientists to produce the closest possible structure in order to conduct computational methods and gain some insight into the behavior of a protein. After constructing the necessary molecules for docking, they are imported into a computational docking software such as MOE. In this program, proteins can be visualized and certain parts of the molecule can be isolated in order to obtain more precise data for a region of interest. A cavity, or region where the molecular docking will take place, is set around the binding site, which is the region in the receptor protein where the ligand attaches to. After specifying the cavity, molecular docking settings are configured and the program is run in order to determine the binding energy of the complex.


Molecular Dynamics (MD)

Molecular dynamic A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry, ...
simulations is a computational study that predicts the movement of every atom in a molecule over time. Molecular dynamics can evaluate the movement of water, ions, small and macromolecules, or even complex systems which is extremally useful for reproducing the behavior of chemical and biological environments. This theoretical approach allows scientists to gain further insight into how molecules may behave with respect to each other, specifically if a molecule will leave or remain in a binding pocket. If a molecule remains in a binding pocket, this often indicates that the molecule creates a stable complex with the receptor and is energetically favorable. On the other hand, if the molecule leaves the binding pocket, this indicates that the complex is not stable. This information is then utilized to design new compounds with characteristics that may have a greater or lesser affinity for a receptor.


Applications and Usage


Drug Discovery

Drug discovery In the fields of medicine, biotechnology, and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or ...
is a process that involves the use of computational, experimental, and clinical studies in order to design new therapeutics. This process is lengthy and costly, yet it is the most popular process to date in developing successful treatments and medicines for a variety of diseases. The increasing use of drug discovery can be attributed to new technology that allow for computation/theoretical studies. Data from computation/theoretical studies is often the foundation and reasoning for the development of new drugs. Without promising theoretical data, these compounds may not be synthesized and tested during experimental studies. Molecular modeling, molecular docking, and MD simulations are some of many computation studies that takes places during drug discovery, allowing scientists to thoroughly study the structure and properties of organic and inorganic molecules. By studying these properties, scientists can gain insight to predict the affinity of molecules in biological and chemical systems in order to determine how a therapeutic may react with different types of chemicals, receptors, and other conditions found in humans or other animals. For example, molecular dynamics is often used throughout drug discovery in order to identify structural cavities that are important for determining binding affinity. This data is then compiled and analyzed to determine if certain therapeutics should be synthesized and tested clinically, or if further optimization is required for the design of new medicines that are more effective.


Pesticides and Herbicides

Computational chemistry can also be applied to the development of safer
pesticide Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others (see table). The most common of these are herbicides, which account for approximately 50% of all p ...
s and
herbicide Herbicides (, ), also commonly known as weed killers, are substances used to control undesired plants, also known as weeds.EPA. February 201Pesticides Industry. Sales and Usage 2006 and 2007: Market Estimates. Summary in press releasMain page f ...
s. Recently, the increasing use of pesticides and herbicides has raised much controversy due to environmental and public health concerns. It was found that although these chemicals are designed to kill target pests, its effects can often harm other organisms, humans included. Some types of pesticides and herbicides such as
organophosphate In organic chemistry, organophosphates (also known as phosphate esters, or OPEs) are a class of organophosphorus compounds with the general structure , a central phosphate molecule with alkyl or aromatic substituents. They can be considered ...
s and
carbamate In organic chemistry, a carbamate is a category of organic compounds with the general Chemical formula, formula and Chemical structure, structure , which are formally Derivative (chemistry), derived from carbamic acid (). The term includes orga ...
s can affect the nervous system in humans, while others were found to be
carcinogen A carcinogen () is any agent that promotes the development of cancer. Carcinogens can include synthetic chemicals, naturally occurring substances, physical agents such as ionizing and non-ionizing radiation, and biologic agents such as viruse ...
ic, irritate the skin or eyes, and even affect the hormone or endocrine system. Furthermore,
neonicotinoid Neonicotinoids (sometimes shortened to neonics ) are a class of neuro-active insecticides chemically similar to nicotine, developed by scientists at Royal Dutch Shell, Shell and Bayer in the 1980s. Neonicotinoids are among the widest-used insecti ...
s is another type of pesticide that recently gained popularity due to its effectiveness at targeting aphids and other pests that hinder agriculture production. Although there are not many human health concerns associated with neonicotinoids (which is another reason for its popularity), the increasing use of this pesticide has been linked to Colony Collapse Disorder (CCD), or the rapid disappearance of adult bees. Due to this pattern, the European Union has banned the outdoor use of three neonicotinoid pesticides in an attempt to mitigate CCD. Clearly, there are multiple issues regarding the use of these pesticides and herbicides. A call for safer and more efficient pesticides and herbicides is being accomplished with the help of computational/theoretical methods.


Future Implications

Computational/theoretical chemistry and biology methods are continuously pushing the horizon. Recently,
DeepMind DeepMind Technologies Limited, trading as Google DeepMind or simply DeepMind, is a British–American artificial intelligence research laboratory which serves as a subsidiary of Alphabet Inc. Founded in the UK in 2010, it was acquired by Go ...
, which is a company specializing in the development of
artificial intelligence Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of re ...
(AI), created an AI system named
AlphaFold AlphaFold is an artificial intelligence (AI) program developed by DeepMind, a subsidiary of Alphabet, which performs predictions of protein structure. It is designed using deep learning techniques. AlphaFold 1 (2018) placed first in the overall ...
. AlphaFold is the most advanced system to date that can accurately predict a protein's 3D structure from its amino acid sequence. The protein folding problem first began to emerge around the 1960s and ever since, scientists have struggled in determining methods to precisely predict the way a protein will fold solely based on the amino acid sequence. However, with recent advances in technology, AlphaFold has made a breakthrough in this long lasting issue. By utilizing a database with over 350,000 structures, AlphaFold can determine the shape of a protein in a few minutes with atomic accuracy. The ability to predict the structure of millions of unknown proteins can help to combat disease, find more effective medicines, and unlock other unknowns that govern life. This technological breakthrough will revolutionize future research and will have profound effects for the scientific community.


References


External links

* {{Chemistry software Molecular modelling software Chemistry software for Linux Computational chemistry software