Molecular Motor
   HOME

TheInfoList



OR:

Molecular motors are natural (biological) or artificial
molecular machine Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switch ...
s that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or
mechanical work In science, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force stre ...
; for example, many
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
-based molecular motors harness the chemical free energy released by the
hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution reaction, substitution, elimination reaction, elimination, and solvation reactions in which water ...
of ATP in order to perform mechanical work. In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment in which the fluctuations due to
thermal noise A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
are significant.


Examples

Some examples of biologically important molecular motors: * Cytoskeletal motors **
Myosin Myosins () are a Protein family, family of motor proteins (though most often protein complexes) best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are adenosine triphosphate, ATP- ...
s are responsible for muscle contraction, intracellular cargo transport, and producing cellular tension. ** Kinesin moves cargo inside cells away from the nucleus along
microtubule Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nanometer, nm and have an inner diameter bet ...
s, in anterograde transport. ** Dynein produces the axonemal beating of
cilia The cilium (: cilia; ; in Medieval Latin and in anatomy, ''cilium'') is a short hair-like membrane protrusion from many types of eukaryotic cell. (Cilia are absent in bacteria and archaea.) The cilium has the shape of a slender threadlike proj ...
and
flagella A flagellum (; : flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores ( zoospores), and from a wide range of microorganisms to provide motility. Many pr ...
and also transports cargo along microtubules towards the cell nucleus, in retrograde transport. * Polymerisation motors **
Actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
polymerization generates forces and can be used for propulsion. ATP is used. **
Microtubule Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nanometer, nm and have an inner diameter bet ...
polymerization using GTP. **
Dynamin Dynamin is a GTPase protein responsible for endocytosis in the eukaryotic cell. Dynamin is part of the "dynamin superfamily", which includes classical dynamins, dynamin-like proteins, MX1, Mx proteins, OPA1, MFN1, mitofusins, and Guanylate-bindin ...
is responsible for the separation of clathrin buds from the plasma membrane. GTP is used. *Rotary motors: ** FoF1-ATP synthase family of proteins convert the chemical energy in ATP to the electrochemical potential energy of a proton gradient across a membrane or the other way around. The catalysis of the chemical reaction and the movement of protons are coupled to each other via the mechanical rotation of parts of the complex. This is involved in ATP synthesis in the
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
and chloroplasts as well as in pumping of protons across the vacuolar membrane. ** The bacterial
flagellum A flagellum (; : flagella) (Latin for 'whip' or 'scourge') is a hair-like appendage that protrudes from certain plant and animal sperm cells, from fungal spores ( zoospores), and from a wide range of microorganisms to provide motility. Many pr ...
responsible for the swimming and tumbling of '' E. coli'' and other bacteria acts as a rigid propeller that is powered by a rotary motor. This motor is driven by the flow of protons across a membrane, possibly using a similar mechanism to that found in the Fo motor in ATP synthase. * Nucleic acid motors: **
RNA polymerase In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template. Using the e ...
transcribes
RNA Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyrib ...
from a
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
template. **
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create t ...
turns single-stranded DNA into double-stranded DNA. **
Helicase Helicases are a class of enzymes that are vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic double helix, separating the two hybridized ...
s separate double strands of nucleic acids prior to transcription or replication. ATP is used. ** Topoisomerases reduce supercoiling of DNA in the cell. ATP is used. ** RSC and
SWI/SNF In molecular biology, SWI/SNF (SWItch/Sucrose Non-Fermentable), is a subfamily of ATP-dependent chromatin remodeling complexes, which is found in eukaryotes. In other words, it is a group of proteins that associate to remodel the way DNA is packa ...
complexes remodel chromatin in eukaryotic cells. ATP is used. ** SMC proteins responsible for chromosome condensation in eukaryotic cells. ** Viral DNA packaging motors inject viral genomic
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
into capsids as part of their replication cycle, packing it very tightly. Several models have been put forward to explain how the protein generates the force required to drive the DNA into the capsid. An alternative proposal is that, in contrast with all other biological motors, the force is not generated directly by the protein, but by the DNA itself. In this model, ATP hydrolysis is used to drive protein conformational changes that alternatively dehydrate and rehydrate the DNA, cyclically driving it from B-DNA to A-DNA and back again. A-DNA is 23% shorter than B-DNA, and the DNA shrink/expand cycle is coupled to a protein-DNA grip/release cycle to generate the forward motion that propels DNA into the capsid. * Enzymatic motors: The enzymes below have been shown to diffuse faster in the presence of their catalytic substrates, known as enhanced diffusion. They also have been shown to move directionally in a gradient of their substrates, known as
chemotaxis Chemotaxis (from ''chemical substance, chemo-'' + ''taxis'') is the movement of an organism or entity in response to a chemical stimulus. Somatic cells, bacteria, and other single-cell organism, single-cell or multicellular organisms direct thei ...
. Their mechanisms of diffusion and chemotaxis are still debated. Possible mechanisms include solutal buoyancy, phoresis or conformational changes leading to change in effective diffusivity and kinetic asymmetry. **
Catalase Catalase is a common enzyme found in nearly all living organisms exposed to oxygen (such as bacteria, plants, and animals) which catalyzes the decomposition of hydrogen peroxide to water and oxygen. It is a very important enzyme in protecting ...
**
Urease Ureases (), functionally, belong to the superfamily of amidohydrolases and phosphotriesterases. Ureases are found in numerous Bacteria, Archaea, fungi, algae, plants, and some invertebrates. Ureases are nickel-containing metalloenzymes of high ...
** Aldolase **
Hexokinase A hexokinase is an enzyme that irreversibly phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important p ...
** Phosphoglucose isomerase ** Phosphofructokinase ** Glucose oxidase A recent study has also shown that certain enzymes, such as Hexokinase and Glucose Oxidase, are aggregating or fragmenting during catalysis. This changes their hydrodynamic size that can affect enhanced diffusion measurements. * Synthetic molecular motors have been created by chemists that yield rotation, possibly generating torque.


Organelle and vesicle transport

There are two major families of molecular motors that transport
organelle In cell biology, an organelle is a specialized subunit, usually within a cell (biology), cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as Organ (anatomy), organs are to th ...
s throughout the cell. These families include the dynein family and the kinesin family. Both have very different structures from one another and different ways of achieving a similar goal of moving organelles around the cell. These distances, though only few micrometers, are all preplanned out using microtubules. * Kinesin These molecular motors always move towards the positive end of the cell ** Uses ATP hydrolysis during the process converting ATP to ADP *** This process consists of ... **** The "foot" of the motor binds using ATP, the "foot" proceeds a step, and then ADP comes off. This repeats itself until the destination has been reached ** The kinesin family consists of a multitude of different motor types *** Kinesin-1 (Conventional) *** Kinesin-2 (Heterotrimeric) *** Kinesin-5 (Bipolar) *** Kinesin-13 * Dynein These molecular motors always move towards the negative end of the cell ** Uses ATP hydrolysis during the process converting ATP to ADP ** Unlike kinesin, the dynein is structured in a different way which requires it to have different movement methods. *** One of these methods includes the power stroke, which allows the motor protein to "crawl" along the microtubule to its location. ** The structure of dynein consists of *** A Stem Containing **** A region that binds to dynactin **** Intermediate/light chains that will attach to the dynactin bonding region *** A Head *** A Stalk **** With a domain that will bind to the microtubule :::::These molecular motors tend to take the path of the
microtubule Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nanometer, nm and have an inner diameter bet ...
s. This is most likely due to the facts that the microtubules spring forth out of the
centrosome In cell biology, the centrosome (Latin centrum 'center' + Greek sōma 'body') (archaically cytocentre) is an organelle that serves as the main microtubule organizing center (MTOC) of the animal cell, as well as a regulator of cell-cycle progre ...
and surround the entire volume of the cell. This in turn creates a "Rail system" of the whole cell and paths leading to its organelles.


Theoretical considerations

Because the motor events are
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
, molecular motors are often modeled with the
Fokker–Planck equation In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag (physi ...
or with
Monte Carlo method Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be ...
s. These theoretical models are especially useful when treating the molecular motor as a Brownian motor.


Experimental observation

In experimental
biophysics Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena. Biophysics covers all scales of biological organization, from molecular to organismic and populations ...
, the activity of molecular motors is observed with many different experimental approaches, among them: * Fluorescent methods: fluorescence resonance energy transfer (
FRET A fret is any of the thin strips of material, usually metal wire, inserted laterally at specific positions along the neck or fretboard of a stringed instrument. Frets usually extend across the full width of the neck. On some historical inst ...
), fluorescence correlation spectroscopy ( FCS), total internal reflection fluorescence ( TIRF). * Magnetic tweezers can also be useful for analysis of motors that operate on long pieces of DNA. * Neutron spin echo spectroscopy can be used to observe motion on nanosecond timescales. * Optical tweezers (not to be confused with molecular tweezers in context) are well-suited for studying molecular motors because of their low spring constants. * Scattering techniques: single particle tracking based on
dark field microscopy Dark-field microscopy, also called dark-ground microscopy, describes microscopy methods, in both light microscopy, light and electron microscopy, which exclude the unscattered beam from the image. Consequently, the field around the specimen (i.e ...
or interferometric scattering microscopy (iSCAT) * Single-molecule
electrophysiology Electrophysiology (from ee the Electron#Etymology, etymology of "electron" ; and ) is the branch of physiology that studies the electrical properties of biological cell (biology), cells and tissues. It involves measurements of voltage change ...
can be used to measure the dynamics of individual ion channels. Many more techniques are also used. As new technologies and methods are developed, it is expected that knowledge of naturally occurring molecular motors will be helpful in constructing synthetic nanoscale motors.


Non-biological

Recently, chemists and those involved in
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
have begun to explore the possibility of creating molecular motors ''de novo.'' These synthetic molecular motors currently suffer many limitations that confine their use to the research laboratory. However, many of these limitations may be overcome as our understanding of chemistry and physics at the nanoscale increases. One step toward understanding nanoscale dynamics was made with the study of catalyst diffusion in the Grubb's catalyst system. Other systems like the nanocars, while not technically motors, are also illustrative of recent efforts towards synthetic nanoscale motors. Other non-reacting molecules can also behave as motors. This has been demonstrated by using dye molecules that move directionally in gradients of polymer solution through favorable hydrophobic interactions. Another recent study has shown that dye molecules, hard and soft colloidal particles are able to move through gradient of polymer solution through excluded volume effects.


See also

* Brownian motor * Brownian ratchet *
Cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
*
Molecular machine Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switch ...
s *
Molecular mechanics Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using Force field (chemi ...
* Molecular propeller * Motor proteins * Nanomotor * Protein dynamics * Synthetic molecular motors


References


External links


MBInfo - Molecular Motor Activity

MBInfo - Cytoskeleton-dependent MBInfo - Intracellular Transport

Cymobase
- A database for cytoskeletal and motor protein sequence information * Jonathan Howard (2001), Mechanics of motor proteins and the cytoskeleton. {{ISBN, 9780878933334 Molecular machines Biophysics Cell movement