The principle of microscopic reversibility in
physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
is twofold:
* First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respect to inversion in time (
T-symmetry
T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal,
: T: t \mapsto -t.
Since the second law of thermodynamics states that entropy increases as time flows toward the futur ...
);
* Second, it relates to the statistical description of the kinetics of macroscopic or mesoscopic systems as an ensemble of elementary processes: collisions, elementary transitions or reactions. For these processes, the consequence of the microscopic T-symmetry is:
''Corresponding to every individual process there is a reverse process, and in a state of equilibrium the average rate of every process is equal to the average rate of its reverse process.''
History of microscopic reversibility
The idea of microscopic reversibility was born together with physical kinetics. In 1872,
Ludwig Boltzmann
Ludwig Eduard Boltzmann ( ; ; 20 February 1844 – 5 September 1906) was an Austrian mathematician and Theoretical physics, theoretical physicist. His greatest achievements were the development of statistical mechanics and the statistical ex ...
represented kinetics of gases as statistical ensemble of elementary collisions.
[Boltzmann, L. (1964), Lectures on gas theory, Berkeley, CA, USA: U. of California Press.] Equations of mechanics are reversible in time, hence, the reverse collisions obey the same laws. This reversibility of collisions is the first example of microreversibility. According to Boltzmann, this microreversibility implies the principle of
detailed balance
The principle of detailed balance can be used in Kinetics (physics), kinetic systems which are decomposed into elementary processes (collisions, or steps, or elementary reactions). It states that at Thermodynamic equilibrium, equilibrium, each elem ...
for collisions: at the equilibrium ensemble each collision is equilibrated by its reverse collision.
These ideas of Boltzmann were analyzed in detail and generalized by
Richard C. Tolman.
[ Tolman, R. C. (1938). ''The Principles of Statistical Mechanics''. Oxford University Press, London, UK.]
In chemistry,
J. H. van't Hoff (1884) came up with the idea that equilibrium has dynamical nature and is a result of the balance between the forward and backward reaction rates. He did not study reaction mechanisms with many elementary reactions and could not formulate the principle of detailed balance for complex reactions. In 1901,
Rudolf Wegscheider introduced the principle of detailed balance for complex chemical reactions. He found that for a complex reaction the principle of detailed balance implies important and non-trivial relations between reaction rate constants for different reactions. In particular, he demonstrated that the irreversible cycles of reaction are impossible and for the reversible cycles the product of constants of the forward reactions (in the "clockwise" direction) is equal to the product of constants of the reverse reactions (in the "anticlockwise" direction).
Lars Onsager
Lars Onsager (November 27, 1903 – October 5, 1976) was a Norwegian American physical chemist and theoretical physicist. He held the Gibbs Professorship of Theoretical Chemistry at Yale University. He was awarded the Nobel Prize in Chemist ...
(1931) used these relations in his well-known work,
without direct citation but with the following remark:
"Here, however, the chemists are accustomed to impose a very interesting additional restriction, namely: when the equilibrium is reached each individual reaction must balance itself. They require that the transition must take place just as frequently as the reverse transition etc."
The quantum theory of emission and absorption developed by
Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
(1916, 1917) gives an example of application of the microreversibility and detailed balance to development of a new branch of kinetic theory.
Sometimes, the principle of detailed balance is formulated in the narrow sense, for chemical reactions only but in the history of physics it has the broader use: it was invented for collisions, used for emission and absorption of quanta, for transport processes and for many other phenomena.
In its modern form, the principle of microreversibility was published by Lewis (1925).
In the classical textbooks
[ Vol. 10 of the Course of Theoretical Physics(3rd Ed).] full theory and many examples of applications are presented.
Time-reversibility of dynamics
The
Newton and the
Schrödinger equation
The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after E ...
s in the absence of the macroscopic
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s and in the
inertial frame of reference
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
are T-invariant: if ''X(t)'' is a solution then ''X(-t)'' is also a solution (here ''X'' is the vector of all dynamic variables, including all the coordinates of particles for the Newton equations and the
wave function
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters and (lower-case and capital psi (letter) ...
in the
configuration space for the Schrödinger equation).
There are two sources of the violation of this rule:
* First, if dynamics depend on a
pseudovector
In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does ''not'' transform like a vector under certain ' ...
like the magnetic field or the rotation angular speed in the rotating frame then the T-symmetry does not hold.
* Second, in microphysics of
weak interaction
In nuclear physics and particle physics, the weak interaction, weak force or the weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is th ...
the T-symmetry may be violated and only the combined
CPT symmetry holds.
Macroscopic consequences of the time-reversibility of dynamics
In physics and chemistry, there are two main macroscopic consequences of the time-reversibility of microscopic dynamics: the principle of
detailed balance
The principle of detailed balance can be used in Kinetics (physics), kinetic systems which are decomposed into elementary processes (collisions, or steps, or elementary reactions). It states that at Thermodynamic equilibrium, equilibrium, each elem ...
and the
Onsager reciprocal relations
In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.
"Reciprocal relations" occur betw ...
.
The statistical description of the macroscopic process as an ensemble of the elementary indivisible events (collisions) was invented by
L. Boltzmann and formalised in the
Boltzmann equation
The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium; it was devised by Ludwig Boltzmann in 1872.Encyclopaedia of Physics (2nd Edition), R. G ...
. He discovered that the time-reversibility of the Newtonian dynamics leads to the detailed balance for collision: in equilibrium collisions are equilibrated by their reverse collisions. This principle allowed Boltzmann to deduce simple and nice formula for
entropy production
Entropy production (or generation) is the amount of entropy which is produced during heat process to evaluate the efficiency of the process.
Short history
Entropy is produced in irreversible processes. The importance of avoiding irreversible p ...
and prove his famous
H-theorem.
In this way, microscopic reversibility was used to prove macroscopic irreversibility and convergence of ensembles of molecules to their thermodynamic equilibria.
Another macroscopic consequence of microscopic reversibility is the symmetry of kinetic coefficients, the so-called reciprocal relations. The reciprocal relations were discovered in the 19th century by
Thomson and
Helmholtz for some phenomena but the general theory was proposed by
Lars Onsager
Lars Onsager (November 27, 1903 – October 5, 1976) was a Norwegian American physical chemist and theoretical physicist. He held the Gibbs Professorship of Theoretical Chemistry at Yale University. He was awarded the Nobel Prize in Chemist ...
in 1931.
He found also the connection between the reciprocal relations and detailed balance. For the equations of the
law of mass action
In chemistry, the law of mass action is the proposition that the rate of a chemical reaction is directly proportional to the product of the activities or concentrations of the reactants. It explains and predicts behaviors of solutions in dy ...
the reciprocal relations appear in the linear approximation near equilibrium as a consequence of the detailed balance conditions. According to the reciprocal relations, the damped oscillations in homogeneous closed systems near thermodynamic equilibria are impossible because the spectrum of symmetric operators is real. Therefore, the relaxation to equilibrium in such a system is monotone if it is sufficiently close to the equilibrium.
References
{{reflist
See also
*
Detailed balance
The principle of detailed balance can be used in Kinetics (physics), kinetic systems which are decomposed into elementary processes (collisions, or steps, or elementary reactions). It states that at Thermodynamic equilibrium, equilibrium, each elem ...
*
Onsager reciprocal relations
In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.
"Reciprocal relations" occur betw ...
Physical chemistry
Statistical mechanics