
MEMS (micro-electromechanical systems) is the technology of
microscopic
The microscopic scale () is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded as the scale betwe ...
devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size (i.e., 0.001 to 0.1 mm), and MEMS devices generally range in size from 20 micrometres to a millimetre (i.e., 0.02 to 1.0 mm), although components arranged in arrays (e.g.,
digital micromirror device
The digital micromirror device, or DMD, is the microoptoelectromechanical system (MOEMS) that is the core of the trademarked Digital Light Processing (DLP) projection technology from Texas Instruments (TI). The device is used in digital proj ...
s) can be more than 1000 mm
2. They usually consist of a central unit that processes data (an
integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
chip such as
microprocessor
A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, a ...
) and several components that interact with the surroundings (such as
microsensor
A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal.
In the broadest definition, a sensor is a devi ...
s).
Because of the large surface area to volume ratio of MEMS, forces produced by ambient
electromagnetism
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
(e.g., electrostatic charges and
magnetic moment
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
s), and fluid dynamics (e.g.,
surface tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension (physics), tension is what allows objects with a higher density than water such as razor blades and insects (e.g. Ge ...
and
viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
) are more important design considerations than with larger scale mechanical devices. MEMS technology is distinguished from
molecular nanotechnology
Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials.
Based on Richard Feynman's vision of miniat ...
or
molecular electronics
Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. It provides a potential means to ...
in that the latter two must also consider
surface chemistry
Surface science is the study of physics, physical and chemistry, chemical phenomena that occur at the interface (chemistry), interface of two phase (matter), phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum int ...
.
The potential of very small machines was appreciated before the technology existed that could make them (see, for example,
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist. He is best known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of t ...
's famous 1959 lecture
There's Plenty of Room at the Bottom
"There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959. Feynman considered the possibi ...
). MEMS became practical once they could be fabricated using modified
semiconductor device fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as Random-access memory, RAM and flash memory). It is a ...
technologies, normally used to make
electronics
Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
. These include molding and plating,
wet etching (
KOH,
TMAH) and
dry etching
Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions (usually a plasma of reactive gases such as fluorocarbons, oxygen, chlorine, boron trichloride; ...
(
RIE and DRIE),
electrical discharge machining
Electrical discharge machining (EDM), also known as spark machining, spark eroding, die sinking, wire burning or wire erosion, is a metal
fabrication process whereby a desired shape is obtained by using electrical discharges (sparks). Material is ...
(EDM), and other technologies capable of manufacturing small devices.
They merge at the nanoscale into
nanoelectromechanical systems
Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NE ...
(NEMS) and
nanotechnology
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
.
History
An early example of a MEMS device is the resonant-gate transistor, an adaptation of the
MOSFET
upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale.
In electronics, the metal–oxide–semiconductor field- ...
, developed by Robert A. Wickstrom for
Harvey C. Nathanson in 1965. Another early example is the resonistor, an electromechanical monolithic
resonator
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a reso ...
patented by Raymond J. Wilfinger between 1966 and 1971. During the 1970s to early 1980s, a number of MOSFET
microsensor
A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal.
In the broadest definition, a sensor is a devi ...
s were developed for measuring physical, chemical, biological and environmental parameters.
The term "MEMS" was introduced in 1986. S.C. Jacobsen (PI) and J.E. Wood (Co-PI) introduced the term "MEMS" by way of a proposal to
DARPA
The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military. Originally known as the Adva ...
(15 July 1986), titled "Micro Electro-Mechanical Systems (MEMS)", granted to the University of Utah. The term "MEMS" was presented by way of an invited talk by S.C. Jacobsen, titled "Micro Electro-Mechanical Systems (MEMS)", at the IEEE Micro Robots and Teleoperators Workshop, Hyannis, MA Nov. 9–11, 1987. The term "MEMS" was published by way of a submitted paper by J.E. Wood, S.C. Jacobsen, and K.W. Grace, titled "SCOFSS: A Small Cantilevered Optical Fiber Servo System", in the IEEE Proceedings Micro Robots and Teleoperators Workshop, Hyannis, MA Nov. 9–11, 1987. CMOS transistors have been manufactured on top of MEMS structures.
Types
There are two basic types of MEMS switch technology:
capacitive
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term st ...
and
ohmic. A capacitive MEMS switch is developed using a moving plate or sensing element, which changes the capacitance. Ohmic switches are controlled by electrostatically controlled cantilevers. Ohmic MEMS switches can fail from metal fatigue of the MEMS
actuator
An actuator is a machine element, component of a machine that produces force, torque, or Displacement (geometry), displacement, when an electrical, Pneumatics, pneumatic or Hydraulic fluid, hydraulic input is supplied to it in a system (called an ...
(cantilever) and contact wear, since cantilevers can deform over time.
Materials

The fabrication of MEMS evolved from the process technology in
semiconductor device fabrication
Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as microprocessors, microcontrollers, and memories (such as Random-access memory, RAM and flash memory). It is a ...
, i.e. the basic techniques are
deposition of material layers, patterning by
photolithography
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.
The process begins with a photosensiti ...
and etching to produce the required shapes.
; Silicon: Silicon is the material used to create most
integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s used in consumer electronics in the modern industry. The
economies of scale
In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of Productivity, output produced per unit of cost (production cost). A decrease in ...
, ready availability of inexpensive high-quality materials, and ability to incorporate electronic functionality make silicon attractive for a wide variety of MEMS applications. Silicon also has significant advantages engendered through its material properties. In single crystal form, silicon is an almost perfect
Hookean material, meaning that when it is flexed there is virtually no
hysteresis
Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
and hence almost no energy dissipation. As well as making for highly repeatable motion, this also makes silicon very reliable as it suffers very little
fatigue
Fatigue is a state of tiredness (which is not sleepiness), exhaustion or loss of energy. It is a signs and symptoms, symptom of any of various diseases; it is not a disease in itself.
Fatigue (in the medical sense) is sometimes associated wit ...
and can have service lifetimes in the range of
billions to
trillions of cycles without breaking.
Semiconductor nanostructures based on silicon are gaining increasing importance in the field of microelectronics and MEMS in particular.
Silicon nanowire
Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications ...
s, fabricated through the
thermal oxidation
In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The ra ...
of silicon, are of further interest in
electrochemical
Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase (typi ...
conversion and storage, including nanowire batteries and
photovoltaic
Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
systems.
; Polymers: Even though the
electronics industry
The electronics industry is the industry (economics), industry that produces electronic devices. It emerged in the 20th century and is today one of the largest global industries. Contemporary society uses a vast array of electronic devices that ar ...
provides an economy of scale for the silicon industry, crystalline silicon is still a complex and relatively expensive material to produce. Polymers on the other hand can be produced in huge volumes, with a great variety of material characteristics. MEMS devices can be made from polymers by processes such as
injection molding
Injection moulding (U.S. spelling: injection molding) is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals (for ...
,
embossing or
stereolithography
Stereolithography (SLA or SL; also known as vat photopolymerisation, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a laye ...
and are especially well suited to
microfluidic
Microfluidics refers to a system that manipulates a small amount of fluids (10−9 to 10−18 liters) using small channels with sizes of ten to hundreds of micrometres. It is a multidisciplinary field that involves molecular analysis, molecular bi ...
applications such as disposable blood testing cartridges.
; Metals: Metals can also be used to create MEMS elements. While metals do not have some of the advantages displayed by silicon in terms of mechanical properties, when used within their limitations, metals can exhibit very high degrees of reliability. Metals can be deposited by electroplating, evaporation, and sputtering processes. Commonly used metals include gold, nickel, aluminium, copper, chromium, titanium, tungsten, platinum, and silver.
; Ceramics: The
nitride
In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
s of silicon, aluminium and titanium as well as
silicon carbide
Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
and other
ceramic
A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s are increasingly applied in MEMS fabrication due to advantageous combinations of material properties.
AlN
Aln, ALN, or AlN may refer to:
Organizations
Paramilitary
* Ação Libertadora Nacional, a Brazilian Marxist–Leninist guerrilla movement
* Armée de Libération Nationale, the armed wing of the nationalist National Liberation Front of Alge ...
crystallizes in the
wurtzite structure
In crystallography, the hexagonal crystal family is one of the six crystal families, which includes two crystal systems (hexagonal and trigonal) and two lattice systems (hexagonal and rhombohedral). While commonly confused, the trigonal crystal ...
and thus shows
pyroelectric
Pyroelectricity (from Greek: ''pyr'' (πυρ), "fire" and electricity) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of ...
and
piezoelectric
Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
properties enabling sensors, for instance, with sensitivity to normal and shear forces.
TiN
Tin is a chemical element; it has symbol Sn () and atomic number 50. A silvery-colored metal, tin is soft enough to be cut with little force, and a bar of tin can be bent by hand with little effort. When bent, a bar of tin makes a sound, the ...
, on the other hand, exhibits a high
electrical conductivity
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity in ...
and large
elastic modulus
An elastic modulus (also known as modulus of elasticity (MOE)) is a quantity that describes an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it.
Definition
The elastic modu ...
, making it possible to implement electrostatic MEMS actuation schemes with ultrathin beams. Moreover, the high resistance of TiN against biocorrosion qualifies the material for applications in biogenic environments. The figure shows an electron-microscopic picture of a MEMS
biosensor
A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector.
The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
with a 50 nm thin bendable TiN beam above a TiN ground plate. Both can be driven as opposite electrodes of a capacitor, since the beam is fixed in electrically isolating side walls. When a fluid is suspended in the cavity its viscosity may be derived from bending the beam by electrical attraction to the ground plate and measuring the bending velocity.
[
]
Basic processes
Deposition processes
One of the basic building blocks in MEMS processing is the ability to deposit thin films of material with a thickness anywhere from one micrometre to about 100 micrometres. The NEMS process is the same, although the measurement of film deposition ranges from a few nanometres to one micrometre. There are two types of deposition processes, as follows.
Physical deposition
Physical vapor deposition ("PVD") consists of a process in which a material is removed from a target, and deposited on a surface. Techniques to do this include the process of sputtering
In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and c ...
, in which an ion beam liberates atoms from a target, allowing them to move through the intervening space and deposit on the desired substrate, and evaporation
Evaporation is a type of vaporization that occurs on the Interface (chemistry), surface of a liquid as it changes into the gas phase. A high concentration of the evaporating substance in the surrounding gas significantly slows down evapora ...
, in which a material is evaporated from a target using either heat (thermal evaporation) or an electron beam (e-beam evaporation) in a vacuum system.
Chemical deposition
Chemical deposition techniques include chemical vapor deposition
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
In typical CVD, the wafer (electro ...
(CVD), in which a stream of source gas reacts on the substrate to grow the material desired. This can be further divided into categories depending on the details of the technique, for example LPCVD (low-pressure chemical vapor deposition) and PECVD (plasma-enhanced chemical vapor deposition
Plasma-enhanced chemical vapor deposition (PECVD) is a chemical vapor deposition process used to deposit thin films from a gas state (vapor) to a solid state on a substrate. Chemical reactions are involved in the process, which occur after crea ...
). Oxide films can also be grown by the technique of thermal oxidation
In microfabrication, thermal oxidation is a way to produce a thin layer of oxide (usually silicon dioxide) on the surface of a wafer. The technique forces an oxidizing agent to diffuse into the wafer at high temperature and react with it. The ra ...
, in which the (typically silicon) wafer is exposed to oxygen and/or steam, to grow a thin surface layer of silicon dioxide
Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundan ...
.
Patterning
Patterning is the transfer of a pattern into a material.
Lithography
Lithography in a MEMS context is typically the transfer of a pattern into a photosensitive material by selective exposure to a radiation source such as light. A photosensitive material is a material that experiences a change in its physical properties when exposed to a radiation source. If a photosensitive material is selectively exposed to radiation (e.g. by masking some of the radiation) the pattern of the radiation on the material is transferred to the material exposed, as the properties of the exposed and unexposed regions differs.
This exposed region can then be removed or treated providing a mask for the underlying substrate. Photolithography
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.
The process begins with a photosensiti ...
is typically used with metal or other thin film deposition, wet and dry etching. Sometimes, photolithography is used to create structure without any kind of post etching. One example is SU8 based lens where SU8 based square blocks are generated. Then the photoresist is melted to form a semi-sphere which acts as a lens.
Electron beam lithography
Electron-beam lithography (often abbreviated as e-beam lithography or EBL) is the practice of scanning a focused beam of electrons to draw custom shapes on a surface covered with an electron-sensitive film called a resist (exposing). The electron ...
(often abbreviated as e-beam lithography) is the practice of scanning a beam of electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s in a patterned fashion across a surface covered with a film (called the resist
A resist, used in many areas of manufacturing and art, is something that is added to parts of an object to create a pattern by protecting these parts from being affected by a subsequent stage in the process. Often the resist is then removed.
For ...
), ("exposing" the resist) and of selectively removing either exposed or non-exposed regions of the resist ("developing"). The purpose, as with photolithography
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.
The process begins with a photosensiti ...
, is to create very small structures in the resist that can subsequently be transferred to the substrate material, often by etching. It was developed for manufacturing integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s, and is also used for creating nanotechnology
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
architectures. The primary advantage of electron beam lithography is that it is one of the ways to beat the diffraction limit
In optics, any optical instrument or systema microscope, telescope, or camerahas a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of res ...
of light and make features in the nanometer
330px, Different lengths as in respect to the Molecule">molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling
Despite the va ...
range. This form of maskless lithography
Maskless lithography (MPL) is a photomask-less photolithography-like technology used to project or focal-spot write the image pattern onto a chemical resist-coated substrate (e.g. wafer) by means of UV radiation or electron beam.
In microlithog ...
has found wide usage in photomask
A photomask (also simply called a mask) is an opaque plate with transparent areas that allow light to shine through in a defined pattern. Photomasks are commonly used in photolithography for the production of integrated circuits (ICs or "chips") ...
-making used in photolithography
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.
The process begins with a photosensiti ...
, low-volume production of semiconductor components, and research & development. The key limitation of electron beam lithography is throughput, i.e., the very long time it takes to expose an entire silicon wafer or glass substrate. A long exposure time leaves the user vulnerable to beam drift or instability which may occur during the exposure. Also, the turn-around time for reworking or re-design is lengthened unnecessarily if the pattern is not being changed the second time.
It is known that focused-ion beam lithography
Ion-beam lithography is the practice of scanning a focused beam of ions in a patterned fashion across a surface in order to create very small structures such as integrated circuits or other nanostructures.
Details
Ion-beam lithography has been fo ...
has the capability of writing extremely fine lines (less than 50 nm line and space has been achieved) without proximity effect. However, because the writing field in ion-beam lithography is quite small, large area patterns must be created by stitching together the small fields.
Ion track technology is a deep cutting tool with a resolution limit around 8 nm applicable to radiation resistant minerals, glasses and polymers. It is capable of generating holes in thin films without any development process. Structural depth can be defined either by ion range or by material thickness. Aspect ratios up to several 104 can be reached. The technique can shape and texture materials at a defined inclination angle. Random pattern, single-ion track structures and an aimed pattern consisting of individual single tracks can be generated.
X-ray lithography
X-ray lithography is a process used in semiconductor device fabrication industry to selectively remove parts of a thin film of photoresist. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or ...
is a process used in the electronic industry to selectively remove parts of a thin film. It uses X-rays to transfer a geometric pattern from a mask to a light-sensitive chemical photoresist, or simply "resist", on the substrate. A series of chemical treatments then engraves the produced pattern into the material underneath the photoresist.
Diamond patterning is a method of forming diamond MEMS. It is achieved by the lithographic application of diamond films to a substrate such as silicon. The patterns can be formed by selective deposition through a silicon dioxide mask, or by deposition followed by micromachining or focused ion beam milling.
Etching processes
There are two basic categories of etching processes: wet etching and dry etching
Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions (usually a plasma of reactive gases such as fluorocarbons, oxygen, chlorine, boron trichloride; ...
. In the former, the material is dissolved when immersed in a chemical solution. In the latter, the material is sputtered or dissolved using reactive ions or a vapor phase etchant.
Wet etching
Wet chemical etching consists of the selective removal of material by dipping a substrate into a solution that dissolves it. The chemical nature of this etching process provides good selectivity, which means the etching rate of the target material is considerably higher than the mask material if selected carefully. Wet etching can be performed using either isotropic wet etchants or anisotropic wet etchants. Isotropic wet etchant etch in all directions of the crystalline silicon at approximately equal rates. Anisotropic wet etchants preferably etch along certain crystal planes at faster rates than other planes, thereby allowing more complicated 3-D microstructures to be implemented. Wet anisotropic etchants are often used in conjunction with boron etch stops wherein the surface of the silicon is heavily doped with boron resulting in a silicon material layer that is resistant to the wet etchants. This has been used in MEWS pressure sensor manufacturing for example.
Etching progresses at the same speed in all directions. Long and narrow holes in a mask will produce v-shaped grooves in the silicon. The surface of these grooves can be atomically smooth if the etch is carried out correctly, with dimensions and angles being extremely accurate.
Some single crystal materials, such as silicon, will have different etching rates depending on the crystallographic orientation of the substrate. This is known as anisotropic etching and one of the most common examples is the etching of silicon in KOH (potassium hydroxide), where Si <111> planes etch approximately 100 times slower than other planes ( crystallographic orientations). Therefore, etching a rectangular hole in a (100)-Si wafer results in a pyramid shaped etch pit with 54.7° walls, instead of a hole with curved sidewalls as with isotropic etching.
Hydrofluoric acid
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive. A common concentration is 49% (48–52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling p ...
is commonly used as an aqueous etchant for silicon dioxide (, also known as BOX for SOI), usually in 49% concentrated form, 5:1, 10:1 or 20:1 BOE ( buffered oxide etchant) or BHF (Buffered HF). They were first used in medieval times for glass etching. It was used in IC fabrication for patterning the gate oxide until the process step was replaced by RIE. Hydrofluoric acid is considered one of the more dangerous acids in the cleanroom
A cleanroom or clean room is an engineered space that maintains a very low concentration of airborne particulates. It is well-isolated, well-controlled from contamination, and actively cleansed. Such rooms are commonly needed for scientifi ...
.
Electrochemical etching (ECE) for dopant-selective removal of silicon is a common method to automate and to selectively control etching. An active p–n diode
A diode is a two-Terminal (electronics), terminal electronic component that conducts electric current primarily in One-way traffic, one direction (asymmetric electrical conductance, conductance). It has low (ideally zero) Electrical resistance ...
junction is required, and either type of dopant can be the etch-resistant ("etch-stop") material. Boron is the most common etch-stop dopant. In combination with wet anisotropic etching as described above, ECE has been used successfully for controlling silicon diaphragm thickness in commercial piezoresistive silicon pressure sensors. Selectively doped regions can be created either by implantation, diffusion, or epitaxial deposition of silicon.
Dry etching
Xenon difluoride
Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as th ...
() is a dry vapor phase isotropic etch for silicon originally applied for MEMS in 1995 at University of California, Los Angeles. Primarily used for releasing metal and dielectric structures by undercutting silicon, has the advantage of a stiction
Stiction (a portmanteau of the words '' static'' and ''friction'') is the force that needs to be overcome to enable relative motion of stationary objects in contact.
Any solid objects pressing against each other (but not sliding) will require some ...
-free release unlike wet etchants. Its etch selectivity to silicon is very high, allowing it to work with photoresist, , silicon nitride, and various metals for masking. Its reaction to silicon is "plasmaless", is purely chemical and spontaneous and is often operated in pulsed mode. Models of the etching action are available, and university laboratories and various commercial tools offer solutions using this approach.
Modern VLSI processes avoid wet etching, and use plasma etching
Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (Plasma (physics), plasma) of an appropriate gas mixture being shot (in pulses) at a sample. The plasma source, ...
instead. Plasma etchers can operate in several modes by adjusting the parameters of the plasma. Ordinary plasma etching operates between 0.1 and 5 Torr. (This unit of pressure, commonly used in vacuum engineering, equals approximately 133.3 pascals.) The plasma produces energetic free radicals, neutrally charged, that react at the surface of the wafer. Since neutral particles attack the wafer from all angles, this process is isotropic. Plasma etching can be isotropic, i.e., exhibiting a lateral undercut rate on a patterned surface approximately the same as its downward etch rate, or can be anisotropic, i.e., exhibiting a smaller lateral undercut rate than its downward etch rate. Such anisotropy is maximized in deep reactive ion etching. The use of the term anisotropy for plasma etching should not be conflated with the use of the same term when referring to orientation-dependent etching. The source gas for the plasma usually contains small molecules rich in chlorine or fluorine. For instance, carbon tetrachloride () etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. A plasma containing oxygen is used to oxidize ("ash") photoresist and facilitate its removal.
Ion milling, or sputter etching, uses lower pressures, often as low as 10−4 Torr (10 mPa). It bombards the wafer with energetic ions of noble gases, often Ar+, which knock atoms from the substrate by transferring momentum. Because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. On the other hand, it tends to display poor selectivity. Reactive-ion etching (RIE) operates under conditions intermediate between sputter and plasma etching (between 10−3 and 10−1 Torr). Deep reactive-ion etching (DRIE) modifies the RIE technique to produce deep, narrow features.
In reactive-ion etching (RIE), the substrate is placed inside a reactor, and several gases are introduced. A plasma is struck in the gas mixture using an RF power source, which breaks the gas molecules into ions. The ions accelerate towards, and react with, the surface of the material being etched, forming another gaseous material. This is known as the chemical part of reactive ion etching. There is also a physical part, which is similar to the sputtering deposition process. If the ions have high enough energy, they can knock atoms out of the material to be etched without a chemical reaction. It is a very complex task to develop dry etch processes that balance chemical and physical etching, since there are many parameters to adjust. By changing the balance it is possible to influence the anisotropy of the etching, since the chemical part is isotropic and the physical part highly anisotropic the combination can form sidewalls that have shapes from rounded to vertical.
Deep reactive ion etching
Deep reactive-ion etching (DRIE) is a special subclass of reactive-ion etching (RIE). It enables highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect rati ...
(DRIE) is a special subclass of RIE that is growing in popularity. In this process, etch depths of hundreds of micrometers are achieved with almost vertical sidewalls. The primary technology is based on the so-called "Bosch process", named after the German company Robert Bosch, which filed the original patent, where two different gas compositions alternate in the reactor. Currently, there are two variations of the DRIE. The first variation consists of three distinct steps (the original Bosch process) while the second variation only consists of two steps.
In the first variation, the etch cycle is as follows:
:(i) isotropic etch;
:(ii) passivation;
:(iii) anisotropic etch for floor cleaning.
In the 2nd variation, steps (i) and (iii) are combined.
Both variations operate similarly. The creates a polymer on the surface of the substrate, and the second gas composition ( and ) etches the substrate. The polymer is immediately sputtered away by the physical part of the etching, but only on the horizontal surfaces and not the sidewalls. Since the polymer only dissolves very slowly in the chemical part of the etching, it builds up on the sidewalls and protects them from etching. As a result, etching aspect ratios of 50 to 1 can be achieved. The process can easily be used to etch completely through a silicon substrate, and etch rates are 3–6 times higher than wet etching.
After preparing a large number of MEMS devices on a silicon wafer
In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si, silicium), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.
The ...
, individual dies have to be separated, which is called die preparation
Die preparation is a step of semiconductor device fabrication during which a wafer is prepared for IC packaging and IC testing. The process of die preparation typically consists of two steps: wafer mounting and wafer dicing.
Wafer mounting
...
in semiconductor technology. For some applications, the separation is preceded by wafer backgrinding
Wafer backgrinding is a semiconductor device fabrication step during which wafer thickness is reduced to allow stacking and high-density packaging of integrated circuits (IC).
ICs are produced on semiconductor wafers that undergo a multitude of pr ...
in order to reduce the wafer thickness. Wafer dicing may then be performed either by sawing using a cooling liquid or a dry laser process called stealth dicing.
Manufacturing technologies
Bulk micromachining is the oldest paradigm of silicon-based MEMS. The whole thickness of a silicon wafer is used for building the micro-mechanical structures. Silicon is machined using various etching processes. Bulk micromachining has been essential in enabling high performance pressure sensor
Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressur ...
s and accelerometer
An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration (the rate of change (mathematics), rate of change of velocity) of the object relative to an observer who is in free fall (tha ...
s that changed the sensor industry in the 1980s and 1990s.
Surface micromachining uses layers deposited on the surface of a substrate as the structural materials, rather than using the substrate itself. Surface micromachining was created in the late 1980s to render micromachining of silicon more compatible with planar integrated circuit technology, with the goal of combining MEMS and integrated circuit
An integrated circuit (IC), also known as a microchip or simply chip, is a set of electronic circuits, consisting of various electronic components (such as transistors, resistors, and capacitors) and their interconnections. These components a ...
s on the same silicon wafer. The original surface micromachining concept was based on thin polycrystalline silicon layers patterned as movable mechanical structures and released by sacrificial etching of the underlying oxide layer. Interdigital comb electrodes were used to produce in-plane forces and to detect in-plane movement capacitively. This MEMS paradigm has enabled the manufacturing of low cost accelerometer
An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration (the rate of change (mathematics), rate of change of velocity) of the object relative to an observer who is in free fall (tha ...
s for e.g. automotive air-bag systems and other applications where low performance and/or high g-ranges are sufficient. Analog Devices
Analog Devices, Inc. (ADI), also known simply as Analog, is an American multinational corporation, multinational semiconductor company specializing in data conversion, signal processing, and power management technology, headquartered in Wilming ...
has pioneered the industrialization of surface micromachining and has realized the co-integration of MEMS and integrated circuits.
Wafer bonding involves joining two or more substrates (usually having the same diameter) to one another to form a composite structure. There are several types of wafer bonding processes that are used in microsystems fabrication including: direct or fusion wafer bonding, wherein two or more wafers are bonded together that are usually made of silicon or some other semiconductor material; anodic bonding wherein a boron-doped glass wafer is bonded to a semiconductor wafer, usually silicon; thermocompression bonding, wherein an intermediary thin-film material layer is used to facilitate wafer bonding; and eutectic bonding, wherein a thin-film layer of gold is used to bond two silicon wafers. Each of these methods have specific uses depending on the circumstances. Most wafer bonding processes rely on three basic criteria for successfully bonding: the wafers to be bonded are sufficiently flat; the wafer surfaces are sufficiently smooth; and the wafer surfaces are sufficiently clean. The most stringent criteria for wafer bonding is usually the direct fusion wafer bonding since even one or more small particulates can render the bonding unsuccessful. In comparison, wafer bonding methods that use intermediary layers are often far more forgiving.
Both bulk and surface silicon micromachining are used in the industrial production of sensors, ink-jet nozzles, and other devices. But in many cases the distinction between these two has diminished. A new etching technology, deep reactive-ion etching
Deep reactive-ion etching (DRIE) is a special subclass of reactive-ion etching (RIE). It enables highly anisotropy, anisotropic etching (microfab), etch process used to create deep penetration, steep-sided holes and trenches in wafer (semiconducto ...
, has made it possible to combine good performance typical of bulk micromachining with comb structures and in-plane operation typical of surface micromachining. While it is common in surface micromachining to have structural layer thickness in the range of 2 μm, in HAR silicon micromachining the thickness can be from 10 to 100 μm. The materials commonly used in HAR silicon micromachining are thick polycrystalline silicon, known as epi-poly, and bonded silicon-on-insulator (SOI) wafers although processes for bulk silicon wafer also have been created (SCREAM). Bonding a second wafer by glass frit bonding, anodic bonding or alloy bonding is used to protect the MEMS structures. Integrated circuits are typically not combined with HAR silicon micromachining.
Applications
Some common commercial applications of MEMS include:
* Inkjet printer
Inkjet printing is a type of printer (computing), computer printing that recreates a digital image by propelling droplets of ink onto paper or plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range f ...
s, which use piezoelectric
Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied stress (mechanics), mechanical s ...
s or thermal bubble ejection to deposit ink on paper.
* Accelerometer
An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration (the rate of change (mathematics), rate of change of velocity) of the object relative to an observer who is in free fall (tha ...
s in modern cars for a large number of purposes including airbag
An airbag is a vehicle occupant-restraint system using a bag designed to inflate in milliseconds during a collision and then deflate afterwards. It consists of an airbag cushion, a flexible fabric bag, an inflation module, and an impact sensor. ...
deployment and electronic stability control
Electronic stability control (ESC), also referred to as electronic stability program (ESP) or dynamic stability control (DSC), is a computerized technology that improves a car handling, vehicle's stability by detecting and reducing loss of Tract ...
.
* Inertial measurement unit
An inertial measurement unit (IMU) is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the Orientation (geometry), orientation of the body, using a combination of accelerometers, gyroscopes, an ...
s (IMUs):
** MEMS accelerometer
An accelerometer is a device that measures the proper acceleration of an object. Proper acceleration is the acceleration (the rate of change (mathematics), rate of change of velocity) of the object relative to an observer who is in free fall (tha ...
s.
** MEMS gyroscope
A vibrating structure gyroscope (VSG), defined by the IEEE as a Coriolis vibratory gyroscope (CVG), is a gyroscope that uses a vibrating (as opposed to rotating) structure as its orientation reference. A vibrating structure gyroscope functions ...
s in remote controlled, or autonomous, helicopters, planes and multirotors (also known as drones), used for automatically sensing and balancing flying characteristics of roll, pitch and yaw.
** MEMS magnetic field sensor
A MEMS magnetic field sensor is a small-scale microelectromechanical systems (MEMS) device for detecting and measuring magnetic fields (magnetometer). Many of these operate by detecting effects of the Lorentz force: a change in voltage or resonant ...
(magnetometer
A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, ...
) may also be incorporated in such devices to provide directional heading.
** MEMS inertial navigation system
An inertial navigation system (INS; also inertial guidance system, inertial instrument) is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning th ...
s (INSs) of modern cars, airplanes, submarines and other vehicles to detect yaw, pitch, and roll
An aircraft in flight is free to rotate in three dimensions: '' yaw'', nose left or right about an axis running up and down; ''pitch'', nose up or down about an axis running from wing to wing; and ''roll'', rotation about an axis running from nos ...
; for example, the autopilot
An autopilot is a system used to control the path of a vehicle without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator's control of the vehicle, allow ...
of an airplane.
* Accelerometers in consumer electronics devices such as game controllers (Nintendo Wii
The Wii ( ) is a home video game console developed and marketed by Nintendo. It was released on November 19, 2006, in North America, and in December 2006 for most other regions of the world. It is Nintendo's fifth major home game console, f ...
), personal media players / cell phones (virtually all smartphones, various HTC PDA models), augmented reality
Augmented reality (AR), also known as mixed reality (MR), is a technology that overlays real-time 3D computer graphics, 3D-rendered computer graphics onto a portion of the real world through a display, such as a handheld device or head-mounted ...
(AR) and virtual reality
Virtual reality (VR) is a Simulation, simulated experience that employs 3D near-eye displays and pose tracking to give the user an immersive feel of a virtual world. Applications of virtual reality include entertainment (particularly video gam ...
(VR) devices, and a number of digital cameras (various Canon Digital IXUS models). Also used in PCs to park the hard disk head when free-fall is detected, to prevent damage and data loss.
* MEMS speakers for Headphones
Headphones are a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an ...
* MEMS barometers.
* MEMS microphones in portable devices, e.g., mobile phones, head sets and laptops. The market for smart microphones includes smartphones, wearable devices, smart home and automotive applications.
* Precision temperature-compensated resonators in real-time clock
A real-time clock (RTC) is an electronic device (most often in the form of an integrated circuit) that measures the passage of time.
Although the term often refers to the devices in personal computers, server (computing), servers and embedded ...
s.
* Silicon pressure sensor
Pressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressur ...
s e.g., car tire
A tire (North American English) or tyre (Commonwealth English) is a ring-shaped component that surrounds a Rim (wheel), wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide Traction (engineeri ...
pressure sensor
A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal.
In the broadest definition, a sensor is a devi ...
s, and disposable blood pressure
Blood pressure (BP) is the pressure of Circulatory system, circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term ...
sensor
A sensor is often defined as a device that receives and responds to a signal or stimulus. The stimulus is the quantity, property, or condition that is sensed and converted into electrical signal.
In the broadest definition, a sensor is a devi ...
s.
* Displays
A display device is an output device for presentation of information in visual or tactile form (the latter used for example in tactile electronic displays for blind people). When the input information that is supplied has an electrical signal ...
e.g., the digital micromirror device
The digital micromirror device, or DMD, is the microoptoelectromechanical system (MOEMS) that is the core of the trademarked Digital Light Processing (DLP) projection technology from Texas Instruments (TI). The device is used in digital proj ...
(DMD) chip in a projector based on DLP technology, which has a surface with several hundred thousand micromirrors or single micro-scanning-mirrors also called microscanners. The MEMS mirrors can also be used in conjunction with laser scanning to project an image.
* Optical switch
An optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output ...
ing technology, which is used for switching technology and alignment for data communications
Data communication, including data transmission and data reception, is the transfer of data, signal transmission, transmitted and received over a Point-to-point (telecommunications), point-to-point or point-to-multipoint communication chann ...
.
* RF switches and relays.
* Bio-MEMS
Bio-MEMS is an abbreviation for biomedical (or biological) microelectromechanical systems. Bio-MEMS have considerable overlap, and is sometimes considered synonymous, with lab-on-a-chip (LOC) and micro total analysis systems (). Bio-MEMS is typic ...
applications in medical and health related technologies including lab-on-a-chip
A lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on a single integrated circuit (commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and high-throughput screening. ...
(taking advantage of microfluidics
Microfluidics refers to a system that manipulates a small amount of fluids (10−9 to 10−18 liters) using small channels with sizes of ten to hundreds of micrometres. It is a multidisciplinary field that involves molecular analysis, molecular bi ...
and micropump
Micropumps are devices that can control and manipulate small fluid volumes. Although any kind of small pump is often referred to as a micropump, a more accurate definition restricts this term to pumps with functional dimensions in the micrometer ...
s), biosensor
A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector.
The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
s, chemosensors as well as embedded components of medical devices e.g. stents.
* Interferometric modulator display Interferometric modulator display (IMOD, trademarked mirasol) is a technology used in electronic visual displays that can create various colors via interference of reflected light. The color is selected with an electrically switched light modulator ...
(IMOD) applications in consumer electronics (primarily displays for mobile devices), used to create interferometric modulation − reflective display technology as found in mirasol displays.
* Fluid acceleration, such as for micro-cooling.
* Micro-scale energy harvesting
Energy harvesting (EH) – also known as power harvesting, energy scavenging, or ambient power – is the process by which energy is derived from external sources (e.g., solar power, thermal energy, wind energy, Osmotic power, salinity gradients, ...
including piezoelectric, electrostatic and electromagnetic micro harvesters.
* Micromachined ultrasound transducer
Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasou ...
s.
* MEMS-based loudspeakers focusing on applications such as in-ear headphones and hearing aids.
* MEMS oscillators.
* MEMS-based scanning probe microscopes including atomic force microscopes.
* LiDAR
Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
(light detection and ranging).
Industry structure
The global market for micro-electromechanical systems, which includes products such as automobile airbag systems, display systems and inkjet cartridges totaled $40 billion in 2006 according to Global MEMS/Microsystems Markets and Opportunities, a research report from SEMI
SEMI is an industry association comprising companies involved in the electronics design and manufacturing supply chain. They provide equipment, materials and services for the manufacture of semiconductors, photovoltaic panels, LED and flat pan ...
and Yole Development and is forecasted to reach $72 billion by 2011.
Companies with strong MEMS programs come in many sizes. Larger firms specialize in manufacturing high volume inexpensive components or packaged solutions for end markets such as automobiles, biomedical, and electronics. Smaller firms provide value in innovative solutions and absorb the expense of custom fabrication with high sales margins. Both large and small companies typically invest in R&D to explore new MEMS technology.
The market for materials and equipment used to manufacture MEMS devices topped $1 billion worldwide in 2006. Materials demand is driven by substrates, making up over 70 percent of the market, packaging coatings and increasing use of chemical mechanical planarization (CMP). While MEMS manufacturing continues to be dominated by used semiconductor equipment, there is a migration to 200mm lines and select new tools, including etch and bonding for certain MEMS applications.
See also
* MEMS sensor generations
* Microoptoelectromechanical systems
Microoptoelectromechanical systems (MOEMS), also known as optical MEMS, are integrations of mechanical, optical, and electrical systems that involve sensing or manipulating optical signals at a very small size. MOEMS includes a wide variety of de ...
* Microoptomechanical systems
* Nanoelectromechanical systems
Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NE ...
References
Further reading
* '' Microsystem Technologies'', published by Springer Publishing
Springer Publishing Company is an American publishing company of academic journals and books, focusing on the fields of nursing, gerontology, psychology, social work, counseling, public health, and rehabilitation (neuropsychology). It was estab ...
Journal homepage
*
External links
*
{{DEFAULTSORT:Microelectromechanical Systems
Transducers
Mechanical engineering
Electrical engineering
Microtechnology
Microelectronic and microelectromechanical systems
Articles containing video clips