In
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
, the Meyerhoff manifold is the
arithmetic hyperbolic 3-manifold In mathematics, more precisely in group theory and hyperbolic geometry, Arithmetic Kleinian groups are a special class of Kleinian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. An ar ...
obtained by
surgery on the
figure-8 knot complement
In mathematics, the knot complement of a tame knot ''K'' is the space where the knot is not. If a knot is embedded in the 3-sphere, then the complement is the 3-sphere minus the space near the knot. To make this precise, suppose that ''K'' is a ...
. It was introduced by as a possible candidate for the hyperbolic 3-manifold of smallest volume, but the
Weeks manifold In mathematics, the Weeks manifold, sometimes called the Fomenko–Matveev–Weeks manifold, is a closed hyperbolic 3-manifold obtained by (5, 2) and (5, 1) Dehn surgeries on the Whitehead link. It has volume approximately equal to 0.9 ...
turned out to have slightly smaller volume. It has the second smallest volume
:
of orientable arithmetic hyperbolic 3-manifolds, where
is the
zeta function
In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function
: \zeta(s) = \sum_^\infty \frac 1 .
Zeta functions include:
* Airy zeta function, related to the zeros of the Airy function
* ...
of the quartic field of discriminant
. Alternatively,
:
where
is the
polylogarithm
In mathematics, the polylogarithm (also known as Jonquière's function, for Alfred Jonquière) is a special function of order and argument . Only for special values of does the polylogarithm reduce to an elementary function such as the natu ...
and
is the
absolute value of the complex root
(with positive imaginary part) of the
quartic .
showed that this manifold is arithmetic.
See also
*
Gieseking manifold
*
Weeks manifold In mathematics, the Weeks manifold, sometimes called the Fomenko–Matveev–Weeks manifold, is a closed hyperbolic 3-manifold obtained by (5, 2) and (5, 1) Dehn surgeries on the Whitehead link. It has volume approximately equal to 0.9 ...
References
*
*
*
3-manifolds
Hyperbolic geometry
{{hyperbolic-geometry-stub