In
calculus
Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
Originally called infinitesimal calculus or "the ...
, the method of normals was a technique invented by
Descartes for finding
normal and
tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
lines to
curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
s. It represented one of the earliest methods for constructing tangents to curves. The method hinges on the observation that the
radius
In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
of a
circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
is always normal to the circle itself. With this in mind Descartes would construct a circle that was tangent to a given curve. He could then use the radius at the point of intersection to find the slope of a normal line, and from this one can easily find the slope of a tangent line.
This was discovered about the same time as
Fermat
Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
's method of
adequality
Adequality is a technique developed by Pierre de Fermat in his treatise ''Methodus ad disquirendam maximam et minimam'' (a Latin treatise circulated in France c. 1636 ) to calculate maxima and minima of functions, tangents to curves, area, center o ...
. While Fermat's method had more in common with the
infinitesimal
In mathematics, an infinitesimal number is a non-zero quantity that is closer to 0 than any non-zero real number is. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referred to the " ...
techniques that were to be used later, Descartes' method was more influential in the early history of calculus.
One reason Descartes' method fell from favor was the algebraic complexity it involved. On the other hand, this method can be used to rigorously define the
derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
for a wide class of functions using neither infinitesimal nor
limit techniques. It is also related to a completely general definition of differentiability given by
Carathéodory .
References
*
*
History of calculus
{{Math-hist-stub