HOME

TheInfoList



OR:

A metal gate, in the context of a lateral metal–oxide–semiconductor (MOS) stack, is the gate electrode separated by an oxide from the transistor's channel – the gate material is made from a metal. In most MOS transistors since about the mid-1970s, the "M" for metal has been replaced by polysilicon, but the name remained.


Aluminum gate

The first
MOSFET upright=1.3, Two power MOSFETs in amperes">A in the ''on'' state, dissipating up to about 100 watt">W and controlling a load of over 2000 W. A matchstick is pictured for scale. In electronics, the metal–oxide–semiconductor field- ...
(metal–oxide–semiconductor field-effect transistor) was made by Mohamed Atalla and Dawon Kahng at
Bell Labs Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
in 1959, and demonstrated in 1960. They used silicon as channel material and a non-self-aligned
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
gate. Aluminum gate metal (typically deposited in an evaporation vacuum chamber onto the wafer surface) was common through the early 1970s.


Polysilicon

By the late 1970s, the industry had moved away from aluminum as the gate material in the metal–oxide–semiconductor stack due to fabrication complications and performance issues. A material called polysilicon ( polycrystalline silicon, highly doped with donors or acceptors to reduce its electrical resistance) was used to replace
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
. Polysilicon can be deposited easily via chemical vapor deposition (CVD) and is tolerant to subsequent manufacturing steps which involve extremely high temperatures (in excess of 900–1000 °C), where metal was not. Particularly, metal (most commonly
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
a Type III ( P-type) dopant) has a tendency to disperse into (
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
with) silicon during these thermal annealing steps. In particular, when used on a silicon wafer with a < 1 1 1 > crystal orientation, excessive alloying of aluminum (from extended high temperature processing steps) with the underlying silicon can create a short circuit between the diffused FET source or drain areas under the aluminum and across the metallurgical junction into the underlying substrate causing irreparable circuit failures. These shorts are created by pyramidal-shaped spikes of silicon-
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
alloy An alloy is a mixture of chemical elements of which in most cases at least one is a metal, metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have prop ...
pointing vertically "down" into the silicon wafer. The practical high-temperature limit for annealing
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
on silicon is on the order of 450 °C. Polysilicon is also attractive for the easy manufacturing of self-aligned gates. The implantation or diffusion of source and drain dopant impurities is carried out with the gate in place, leading to a channel perfectly aligned to the gate without additional lithographic steps with the potential for misalignment of the layers.


NMOS and CMOS

In NMOS and CMOS technologies, over time and elevated temperatures, the positive voltages employed by the gate structure can cause any existing positively charged
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
impurities directly under the positively charged gate to diffuse through the gate dielectric and migrate to the less-positively-charged channel surface, where the positive
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
charge has a higher effect on the channel creation thus lowering the threshold voltage of an N-channel transistor and potentially causing failures over time. Earlier PMOS technologies were not sensitive to this effect because the positively charged sodium was naturally attracted towards the negatively charged gate, and away from the channel, minimizing threshold voltage shifts. N-channel, metal gate processes (in the 1970s) imposed a very high standard of cleanliness (absence of
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
) difficult to achieve in that timeframe, resulting in high manufacturing costs. Polysilicon gates while sensitive to the same phenomenon, could be exposed to small amounts of HCl gas during subsequent high-temperature processing (commonly called " gettering") to react with any
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
, binding with it to form NaCl and carrying it away in the gas stream, leaving an essentially sodium-free gate structure greatly enhancing reliability. However, polysilicon doped at practical levels does not offer the near-zero
electrical resistance The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual paral ...
of metals, and is therefore not ideal for charging and discharging the gate capacitance of the
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
potentially resulting in slower circuitry.


Modern processes return to metal

From the 45 nm node onward, the metal gate technology returns, together with the use of high-dielectric ( high-κ) materials, pioneered by Intel developments. The candidates for the metal gate electrode are, for NMOS, Ta, TaN, Nb (single metal gate) and for PMOS WN/RuO2 (the PMOS metal gate is normally composed by two layers of metal). Due to this solution, the strain capacity on the channel can be improved (by the metal gate). Moreover, this enables less current perturbations (vibrations) in the gate (due to the disposition of electrons inside the metal).


See also

* Gate oxide *
Multigate device A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a metal–oxide–semiconductor field-effect transistor (MOSFET) that has more than one gate (transistor), gate on a single transistor. The multiple g ...


References


External links

* {{DEFAULTSORT:Metal Gate MOSFETs Semiconductor structures
Gate A gate or gateway is a point of entry to or from a space enclosed by walls. The word is derived from Proto-Germanic language, Proto-Germanic ''*gatan'', meaning an opening or passageway. Synonyms include yett (which comes from the same root w ...