Measurement Of A Circle
   HOME

TheInfoList



OR:

''Measurement of a Circle'' or ''Dimension of the Circle'' ( Greek: , ''Kuklou metrēsis'') is a
treatise A treatise is a Formality, formal and systematic written discourse on some subject concerned with investigating or exposing the main principles of the subject and its conclusions."mwod:treatise, Treatise." Merriam-Webster Online Dictionary. Acc ...
that consists of three propositions, probably made by
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
, ca. 250 BCE. The treatise is only a fraction of what was a longer work.


Propositions


Proposition one

Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
with a
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
''c'' and a
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
''r'' is equal in
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
with a right triangle with the two legs being ''c'' and ''r''. This proposition is proved by the method of exhaustion.


Proposition two

Proposition two states:
The area of a circle is to the square on its diameter as 11 to 14.
This proposition could not have been placed by Archimedes, for it relies on the outcome of the third proposition.


Proposition three

Proposition three states:
The ratio of the circumference of any circle to its diameter is greater than 3\tfrac but less than 3\tfrac.
This approximates what we now call the mathematical constant π. He found these bounds on the value of π by inscribing and circumscribing a circle with two similar 96-sided
regular polygon In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex ...
s.


Approximation to square roots

This proposition also contains accurate approximations to the square root of 3 (one larger and one smaller) and other larger non-perfect
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
s; however, Archimedes gives no explanation as to how he found these numbers. He gives the upper and lower bounds to as > > . However, these bounds are familiar from the study of Pell's equation and the convergents of an associated simple continued fraction, leading to much speculation as to how much of this number theory might have been accessible to Archimedes. Discussion of this approach goes back at least to Thomas Fantet de Lagny, FRS (compare Chronology of computation of π) in 1723, but was treated more explicitly by Hieronymus Georg Zeuthen. In the early 1880s, Friedrich Otto Hultsch (1833–1906) and Karl Heinrich Hunrath (b. 1847) noted how the bounds could be found quickly by means of simple binomial bounds on square roots close to a perfect square modelled on Elements II.4, 7; this method is favoured by
Thomas Little Heath Sir Thomas Little Heath (; 5 October 1861 – 16 March 1940) was a British civil servant, mathematician, classics, classical scholar, historian of ancient Greek mathematics, translator, and Mountaineering, mountaineer. He was educated at Clifto ...
. Although only one route to the bounds is mentioned, in fact there are two others, making the bounds almost inescapable however the method is worked. But the bounds can also be produced by an iterative geometrical construction suggested by Archimedes' Stomachion in the setting of the regular dodecagon. In this case, the task is to give rational approximations to the tangent of π/12.


References


External links

*
Measurement of a Circle
', English translation by Thomas Heath {{Authority control Works by Archimedes Euclidean geometry