Measurable Function, Measurable
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the concept of a measure is a generalization and formalization of geometrical measures (
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
,
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
,
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
) and other common notions, such as
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
,
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
, and
probability Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an e ...
of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, integration theory, and can be generalized to assume negative values, as with
electrical charge Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
. Far-reaching generalizations (such as
spectral measure In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
s and
projection-valued measure In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
s) of measure are widely used in
quantum physics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
and physics in general. The intuition behind this concept dates back to
Ancient Greece Ancient Greece () was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity (), that comprised a loose collection of culturally and linguistically r ...
, when
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
tried to calculate the
area of a circle In geometry, the area enclosed by a circle of radius is . Here, the Greek letter represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159. One method of deriving this formula, which ori ...
. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of
Émile Borel Félix Édouard Justin Émile Borel (; 7 January 1871 – 3 February 1956) was a French people, French mathematician and politician. As a mathematician, he was known for his founding work in the areas of measure theory and probability. Biograp ...
,
Henri Lebesgue Henri Léon Lebesgue (; ; June 28, 1875 – July 26, 1941) was a French mathematician known for his Lebesgue integration, theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an ...
,
Nikolai Luzin Nikolai Nikolayevich Luzin (also spelled Lusin; rus, Никола́й Никола́евич Лу́зин, p=nʲɪkɐˈlaj nʲɪkɐˈlajɪvʲɪtɕ ˈluzʲɪn, a=Ru-Nikilai Nikilayevich Luzin.ogg; 9 December 1883 – 28 February 1950) was a Sov ...
,
Johann Radon Johann Karl August Radon (; 16 December 1887 – 25 May 1956) was an Austrian mathematician. His doctoral dissertation was on the calculus of variations (in 1910, at the University of Vienna). Life RadonBrigitte Bukovics: ''Biography of Johan ...
,
Constantin Carathéodory Constantin Carathéodory (; 13 September 1873 – 2 February 1950) was a Greeks, Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, ...
, and
Maurice Fréchet Maurice may refer to: *Maurice (name), a given name and surname, including a list of people with the name Places * or Mauritius, an island country in the Indian Ocean * Maurice, Iowa, a city * Maurice, Louisiana, a village * Maurice River, a t ...
, among others.


Definition

Let X be a set and \Sigma a
σ-algebra In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra") is part of the formalism for defining sets that can be measured. In calculus and analysis, for example, σ-algebras are used to define the concept of sets with a ...
over X. A
set function In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R ...
\mu from \Sigma to the
extended real number line In mathematics, the extended real number system is obtained from the real number system \R by adding two elements denoted +\infty and -\infty that are respectively greater and lower than every real number. This allows for treating the potential ...
is called a measure if the following conditions hold: *Non-negativity: For all E \in \Sigma, \ \ \mu(E) \geq 0. *\mu(\varnothing) = 0. *Countable additivity (or
σ-additivity In mathematics, an additive set function is a function \mu mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, \mu(A \cup B) = \mu(A) + \mu(B). If this ad ...
): For all
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
collections \_^\infty of pairwise
disjoint sets In set theory in mathematics and Logic#Formal logic, formal logic, two Set (mathematics), sets are said to be disjoint sets if they have no element (mathematics), element in common. Equivalently, two disjoint sets are sets whose intersection (se ...
in Σ,\mu = \sum_^\infty \mu(E_k). If at least one set E has finite measure, then the requirement \mu(\varnothing) = 0 is met automatically due to countable additivity: \mu(E)=\mu(E \cup \varnothing) = \mu(E) + \mu(\varnothing), and therefore \mu(\varnothing)=0. If the condition of non-negativity is dropped, and \mu takes on at most one of the values of \pm \infty, then \mu is called a ''
signed measure In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign. Definition There are two slightly different concepts of a signed measure, de ...
''. The pair (X, \Sigma) is called a ''
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. It captures and generalises intuitive notions such as length, area, an ...
'', and the members of \Sigma are called measurable sets. A triple (X, \Sigma, \mu) is called a ''
measure space A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that ...
''. A
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
is a measure with total measure one – that is, \mu(X) = 1. A
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models ...
is a measure space with a probability measure. For measure spaces that are also
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s various compatibility conditions can be placed for the measure and the topology. Most measures met in practice in
analysis Analysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
(and in many cases also in
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
) are
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
s. Radon measures have an alternative definition in terms of linear functionals on the
locally convex topological vector space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
of
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s with
compact support In mathematics, the support of a real-valued function f is the subset of the function domain of elements that are not mapped to zero. If the domain of f is a topological space, then the support of f is instead defined as the smallest closed ...
. This approach is taken by Bourbaki (2004) and a number of other sources. For more details, see the article on
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
s.


Instances

Some important measures are listed here. * The
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinit ...
is defined by \mu(S) = number of elements in S. * The
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
on \R is a complete translation-invariant measure on a ''σ''-algebra containing the intervals in \R such that \mu(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
= 1; and every other measure with these properties extends the Lebesgue measure. * The
arc length Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a problem in vector calculus and in differential geometry. In the ...
of interval on the unit circle in the Euclidean plane extends to a measure on the \sigma-algebra they generate. It can be called angle measure since the arc length of an interval equals the angle it supports. This measure is invariant under
rotation Rotation or rotational/rotary motion is the circular movement of an object around a central line, known as an ''axis of rotation''. A plane figure can rotate in either a clockwise or counterclockwise sense around a perpendicular axis intersect ...
s preserving the circle. Similarly, hyperbolic angle measure is invariant under
squeeze mapping In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation (mathematics), rotation or shear mapping. For a fixed p ...
. * The
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfr� ...
for a
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...
. For example, \mathbb R is such a group and its Haar measure is the Lebesgue measure; for the unit circle (seen as a subgroup of the multiplicative group of \mathbb C) its Haar measure is the angle measure. For a
discrete group In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and ...
the counting measure is a Haar measure. *Every (pseudo)
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
(M,g) has a canonical measure \mu_g that in local coordinates x_1,\ldots,x_n looks like \sqrtd^nx where d^nx is the usual Lebesgue measure. * The
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assi ...
is a generalization of the Lebesgue measure to sets with non-integer dimension, in particular, fractal sets. * Every
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models ...
gives rise to a measure which takes the value 1 on the whole space (and therefore takes all its values in the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysi ...
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
. Such a measure is called a ''probability measure'' or ''distribution''. See the list of probability distributions for instances. * The
Dirac measure In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. ...
''δ''''a'' (cf.
Dirac delta function In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line ...
) is given by ''δ''''a''(''S'') = ''χ''''S''(a), where ''χ''''S'' is the
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator functio ...
of S. The measure of a set is 1 if it contains the point a and 0 otherwise. Other 'named' measures used in various theories include:
Borel measure In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. ...
,
Jordan measure Jordan, officially the Hashemite Kingdom of Jordan, is a country in the Southern Levant region of West Asia. Jordan is bordered by Syria to the north, Iraq to the east, Saudi Arabia to the south, and Israel and the occupied Palestinian t ...
, ergodic measure,
Gaussian measure In mathematics, Gaussian measure is a Borel measure on finite-dimensional Euclidean space \mathbb^n, closely related to the normal distribution in statistics. There is also a generalization to infinite-dimensional spaces. Gaussian measures are na ...
, Baire measure,
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
,
Young measure In mathematical analysis, a Young measure is a parameterized measure (mathematics), measure that is associated with certain subsequences of a given bounded sequence of measurable functions. They are a quantification of the oscillation effect of th ...
, and Loeb measure. In physics an example of a measure is spatial distribution of
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
(see for example,
gravity potential In classical mechanics, the gravitational potential is a scalar potential associating with each point in space the work (energy transferred) per unit mass that would be needed to move an object to that point from a fixed reference point in the co ...
), or another non-negative extensive property, conserved (see
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momen ...
for a list of these) or not. Negative values lead to signed measures, see "generalizations" below. * Liouville measure, known also as the natural volume form on a symplectic manifold, is useful in classical statistical and Hamiltonian mechanics. * Gibbs measure is widely used in statistical mechanics, often under the name
canonical ensemble In statistical mechanics, a canonical ensemble is the statistical ensemble that represents the possible states of a mechanical system in thermal equilibrium with a heat bath at a fixed temperature. The system can exchange energy with the hea ...
. Measure theory is used in machine learning. One example is the Flow Induced Probability Measure in GFlowNet.


Basic properties

Let \mu be a measure.


Monotonicity

If E_1 and E_2 are measurable sets with E_1 \subseteq E_2 then \mu(E_1) \leq \mu(E_2).


Measure of countable unions and intersections


Countable subadditivity

For any
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
E_1, E_2, E_3, \ldots of (not necessarily disjoint) measurable sets E_n in \Sigma: \mu\left( \bigcup_^\infty E_i\right) \leq \sum_^\infty \mu(E_i).


Continuity from below

If E_1, E_2, E_3, \ldots are measurable sets that are increasing (meaning that E_1 \subseteq E_2 \subseteq E_3 \subseteq \ldots) then the union of the sets E_n is measurable and \mu\left(\bigcup_^\infty E_i\right) ~=~ \lim_ \mu(E_i) = \sup_ \mu(E_i).


Continuity from above

If E_1, E_2, E_3, \ldots are measurable sets that are decreasing (meaning that E_1 \supseteq E_2 \supseteq E_3 \supseteq \ldots) then the
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of the sets E_n is measurable; furthermore, if at least one of the E_n has finite measure then \mu\left(\bigcap_^\infty E_i\right) = \lim_ \mu(E_i) = \inf_ \mu(E_i). This property is false without the assumption that at least one of the E_n has finite measure. For instance, for each n \in \N, let E_n = [n, \infty) \subseteq \R, which all have infinite Lebesgue measure, but the intersection is empty.


Other properties


Completeness

A measurable set X is called a ''null set'' if \mu(X) = 0. A subset of a null set is called a ''negligible set''. A negligible set need not be measurable, but every measurable negligible set is automatically a null set. A measure is called ''complete'' if every negligible set is measurable. A measure can be extended to a complete one by considering the σ-algebra of subsets Y which differ by a negligible set from a measurable set X, that is, such that the
symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and ...
of X and Y is contained in a null set. One defines \mu(Y) to equal \mu(X).


"Dropping the Edge"

If f:X\to ,+\infty/math> is (\Sigma,( ,+\infty)-measurable, then \mu\ = \mu\ for
almost all In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning o ...
t \in \infty,\infty This property is used in connection with
Lebesgue integral In mathematics, the integral of a non-negative Function (mathematics), function of a single variable can be regarded, in the simplest case, as the area between the Graph of a function, graph of that function and the axis. The Lebesgue integral, ...
.


Additivity

Measures are required to be countably additive. However, the condition can be strengthened as follows. For any set I and any set of nonnegative r_i,i\in I define: \sum_ r_i=\sup\left\lbrace\sum_ r_i : , J, <\infty, J\subseteq I\right\rbrace. That is, we define the sum of the r_i to be the supremum of all the sums of finitely many of them. A measure \mu on \Sigma is \kappa-additive if for any \lambda<\kappa and any family of disjoint sets X_\alpha,\alpha<\lambda the following hold: \bigcup_ X_\alpha \in \Sigma \mu\left(\bigcup_ X_\alpha\right) = \sum_\mu\left(X_\alpha\right). The second condition is equivalent to the statement that the ideal of null sets is \kappa-complete.


Sigma-finite measures

A measure space (X, \Sigma, \mu) is called finite if \mu(X) is a finite real number (rather than \infty). Nonzero finite measures are analogous to
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a σ-algebra that satisfies Measure (mathematics), measure properties such as ''countable additivity''. The difference between a probability measure an ...
s in the sense that any finite measure \mu is proportional to the probability measure \frac\mu. A measure \mu is called ''σ-finite'' if X can be decomposed into a countable union of measurable sets of finite measure. Analogously, a set in a measure space is said to have a ''σ-finite measure'' if it is a countable union of sets with finite measure. For example, the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s with the standard
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
are σ-finite but not finite. Consider the
closed interval In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. A real in ...
s , k+1/math> for all
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s k; there are countably many such intervals, each has measure 1, and their union is the entire real line. Alternatively, consider the
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s with the
counting measure In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinit ...
, which assigns to each finite set of reals the number of points in the set. This measure space is not σ-finite, because every set with finite measure contains only finitely many points, and it would take uncountably many such sets to cover the entire real line. The σ-finite measure spaces have some very convenient properties; σ-finiteness can be compared in this respect to the Lindelöf property of topological spaces. They can be also thought of as a vague generalization of the idea that a measure space may have 'uncountable measure'.


Strictly localizable measures


Semifinite measures

Let X be a set, let be a sigma-algebra on X, and let \mu be a measure on . We say \mu is semifinite to mean that for all A\in\mu^\text\, (A)\cap\mu^\text(\R_)\ne\emptyset. Semifinite measures generalize sigma-finite measures, in such a way that some big theorems of measure theory that hold for sigma-finite but not arbitrary measures can be extended with little modification to hold for semifinite measures. (To-do: add examples of such theorems; cf. the talk page.)


Basic examples

* Every sigma-finite measure is semifinite. * Assume =(X), let f:X\to ,+\infty and assume \mu(A)=\sum_f(a) for all A\subseteq X. ** We have that \mu is sigma-finite if and only if f(x)<+\infty for all x\in X and f^\text(\R_) is countable. We have that \mu is semifinite if and only if f(x)<+\infty for all x\in X. ** Taking f=X\times\ above (so that \mu is counting measure on (X)), we see that counting measure on (X) is *** sigma-finite if and only if X is countable; and *** semifinite (without regard to whether X is countable). (Thus, counting measure, on the power set (X) of an arbitrary uncountable set X, gives an example of a semifinite measure that is not sigma-finite.) * Let d be a complete, separable metric on X, let be the
Borel sigma-algebra In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are ...
induced by d, and let s\in\R_. Then the
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assi ...
^s, is semifinite. * Let d be a complete, separable metric on X, let be the
Borel sigma-algebra In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are ...
induced by d, and let s\in\R_. Then the packing measure ^s, is semifinite.


Involved example

The zero measure is sigma-finite and thus semifinite. In addition, the zero measure is clearly less than or equal to \mu. It can be shown there is a greatest measure with these two properties: We say the semifinite part of \mu to mean the semifinite measure \mu_\text defined in the above theorem. We give some nice, explicit formulas, which some authors may take as definition, for the semifinite part: * \mu_\text=(\sup\)_. * \mu_\text=(\sup\)_\}. * \mu_\text=\mu, _\cup\\times\\cup\\times\. Since \mu_\text is semifinite, it follows that if \mu=\mu_\text then \mu is semifinite. It is also evident that if \mu is semifinite then \mu=\mu_\text.


Non-examples

Every ''0-\infty measure'' that is not the zero measure is not semifinite. (Here, we say ''0-\infty measure'' to mean a measure whose range lies in \: (\forall A\in)(\mu(A)\in\).) Below we give examples of 0-\infty measures that are not zero measures. * Let X be nonempty, let be a \sigma-algebra on X, let f:X\to\ be not the zero function, and let \mu=(\sum_f(x))_. It can be shown that \mu is a measure. ** \mu=\\cup(\setminus\)\times\. *** X=\, =\, \mu=\. * Let X be uncountable, let be a \sigma-algebra on X, let =\ be the countable elements of , and let \mu=\times\\cup(\setminus)\times\. It can be shown that \mu is a measure.


Involved non-example

We say the \mathbf part of \mu to mean the measure \mu_ defined in the above theorem. Here is an explicit formula for \mu_: \mu_=(\sup\)_.


Results regarding semifinite measures

* Let \mathbb F be \R or \C, and let T:L_\mathbb^\infty(\mu)\to\left(L_\mathbb^1(\mu)\right)^*:g\mapsto T_g=\left(\int fgd\mu\right)_. Then \mu is semifinite if and only if T is injective. (This result has import in the study of the dual space of L^1=L_\mathbb^1(\mu).) * Let \mathbb F be \R or \C, and let be the topology of convergence in measure on L_\mathbb^0(\mu). Then \mu is semifinite if and only if is Hausdorff. * (Johnson) Let X be a set, let be a sigma-algebra on X, let \mu be a measure on , let Y be a set, let be a sigma-algebra on Y, and let \nu be a measure on . If \mu,\nu are both not a 0-\infty measure, then both \mu and \nu are semifinite if and only if (\mu\times_\text\nu)(A\times B)=\mu(A)\nu(B) for all A\in and B\in. (Here, \mu\times_\text\nu is the measure defined in Theorem 39.1 in Berberian '65.)


Localizable measures

Localizable measures are a special case of semifinite measures and a generalization of sigma-finite measures. Let X be a set, let be a sigma-algebra on X, and let \mu be a measure on . * Let \mathbb F be \R or \C, and let T : L_\mathbb^\infty(\mu) \to \left(L_\mathbb^1(\mu)\right)^* : g \mapsto T_g = \left(\int fgd\mu\right)_. Then \mu is localizable if and only if T is bijective (if and only if L_\mathbb^\infty(\mu) "is" L_\mathbb^1(\mu)^*).


s-finite measures

A measure is said to be s-finite if it is a countable sum of finite measures. S-finite measures are more general than sigma-finite ones and have applications in the theory of
stochastic processes In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stoc ...
.


Non-measurable sets

If the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
is assumed to be true, it can be proved that not all subsets of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
are
Lebesgue measurable In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it coin ...
; examples of such sets include the
Vitali set In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measure, Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. Each Vitali se ...
, and the non-measurable sets postulated by the Hausdorff paradox and the
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then ...
.


Generalizations

For certain purposes, it is useful to have a "measure" whose values are not restricted to the non-negative reals or infinity. For instance, a countably additive
set function In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line \R \cup \, which consists of the real numbers \R ...
with values in the (signed) real numbers is called a ''
signed measure In mathematics, a signed measure is a generalization of the concept of (positive) measure by allowing the set function to take negative values, i.e., to acquire sign. Definition There are two slightly different concepts of a signed measure, de ...
'', while such a function with values in the
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
is called a ''
complex measure In mathematics, specifically measure theory, a complex measure generalizes the concept of measure by letting it have complex values. In other words, one allows for sets whose size (length, area, volume) is a complex number. Definition Formal ...
''. Observe, however, that complex measure is necessarily of finite variation, hence complex measures include finite signed measures but not, for example, the
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
. Measures that take values in
Banach spaces In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
have been studied extensively. A measure that takes values in the set of self-adjoint projections on a
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
is called a ''
projection-valued measure In mathematics, particularly in functional analysis, a projection-valued measure, or spectral measure, is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-va ...
''; these are used in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
for the
spectral theorem In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involvin ...
. When it is necessary to distinguish the usual measures which take non-negative values from generalizations, the term positive measure is used. Positive measures are closed under conical combination but not general
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
, while signed measures are the linear closure of positive measures. More generally see
measure theory in topological vector spaces In mathematics, measure theory in topological vector spaces refers to the extension of measure theory to topological vector spaces. Such spaces are often infinite-dimensional, but many results of classical measure theory are formulated for finite-d ...
. Another generalization is the ''finitely additive measure'', also known as a content. This is the same as a measure except that instead of requiring ''countable'' additivity we require only ''finite'' additivity. Historically, this definition was used first. It turns out that in general, finitely additive measures are connected with notions such as Banach limits, the dual of L^\infty and the
Stone–Čech compactification In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactification) is a technique for constructing a Universal property, universal map from a topological space ''X'' to a Compact space, compact Ha ...
. All these are linked in one way or another to the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. Contents remain useful in certain technical problems in
geometric measure theory In mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfac ...
; this is the theory of
Banach measure In the mathematics, mathematical discipline of measure theory, a Banach measure is a certain way to assign a size (or area) to all subsets of the Euclidean plane, consistent with but extending the commonly used Lebesgue measure. While there are c ...
s. A ''charge'' is a generalization in both directions: it is a finitely additive, signed measure. (Cf. ba space for information about ''bounded'' charges, where we say a charge is ''bounded'' to mean its range its a bounded subset of ''R''.)


See also

*
Abelian von Neumann algebra In functional analysis, a branch of mathematics, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commutative, commute. The prototypical example of an abelian von Neumann algebra is th ...
*
Almost everywhere In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to ...
* Carathéodory's extension theorem * Content (measure theory) *
Fubini's theorem In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is L ...
*
Fatou's lemma In mathematics, Fatou's lemma establishes an inequality (mathematics), inequality relating the Lebesgue integral of the limit superior and limit inferior, limit inferior of a sequence of function (mathematics), functions to the limit inferior of ...
* Fuzzy measure theory *
Geometric measure theory In mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfac ...
*
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assi ...
* Inner measure *
Lebesgue integration In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the axis. The Lebesgue integral, named after French mathematician Henri L ...
*
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
* Lorentz space * Lifting theory *
Measurable cardinal In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure (mathematics), measure on a cardinal ''κ'', or more generally on any set. For a cardinal ''κ'', ...
*
Measurable function In mathematics, and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in ...
* Minkowski content *
Outer measure In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer me ...
*
Product measure In mathematics, given two measurable spaces and measures on them, one can obtain a product measurable space and a product measure on that space. Conceptually, this is similar to defining the Cartesian product of sets and the product topology o ...
*
Pushforward measure In measure theory, a pushforward measure (also known as push forward, push-forward or image measure) is obtained by transferring ("pushing forward") a measure from one measurable space to another using a measurable function. Definition Given mea ...
*
Regular measure In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Definition Let (''X'', ''T'') be a topol ...
* Vector measure * Valuation (measure theory) *
Volume form In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of t ...


Notes


Bibliography

* Robert G. Bartle (1995) ''The Elements of Integration and Lebesgue Measure'', Wiley Interscience. * * * * * Chapter III. * * * * Federer, Herbert. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp. * Second printing. * * * R. Duncan Luce and Louis Narens (1987). "measurement, theory of", ''The New Palgrave: A Dictionary of Economics'', v. 3, pp. 428–32. * * ** The first edition was published with ''Part B: Functional Analysis'' as a single volume: * M. E. Munroe, 1953. ''Introduction to Measure and Integration''. Addison Wesley. * * * First printing. There is a later (2017) second printing. Though usually there is little difference between the first and subsequent printings, in this case the second printing not only deletes from page 53 the Exercises 36, 40, 41, and 42 of Chapter 2 but also offers a (slightly, but still substantially) different presentation of part (ii) of Exercise 17.8. (The second printing's presentation of part (ii) of Exercise 17.8 (on the Luther decomposition) agrees with usual presentations, whereas the first printing's presentation provides a fresh perspective.) * Shilov, G. E., and Gurevich, B. L., 1978. ''Integral, Measure, and Derivative: A Unified Approach'', Richard A. Silverman, trans. Dover Publications. . Emphasizes the Daniell integral. * * *


References


External links

*
Tutorial: Measure Theory for Dummies
{{Authority control