Mean Field Game Theory
   HOME

TheInfoList



OR:

Mean-field game theory is the study of strategic decision making by small interacting agents in very large populations. It lies at the intersection of
game theory Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed ...
with stochastic analysis and
control theory Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
. The use of the term "mean field" is inspired by
mean-field theory In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over Degrees of ...
in physics, which considers the behavior of systems of large numbers of particles where individual particles have negligible impacts upon the system. In other words, each agent acts according to his minimization or maximization problem taking into account other agents’ decisions and because their population is large we can assume the number of agents goes to infinity and a representative agent exists. In traditional
game theory Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed ...
, the subject of study is usually a game with two players and discrete time space, and extends the results to more complex situations by induction. However, for games in continuous time with continuous states (differential games or stochastic differential games) this strategy cannot be used because of the complexity that the dynamic interactions generate. On the other hand with MFGs we can handle large numbers of players through the mean representative agent and at the same time describe complex state dynamics. This class of problems was considered in the economics literature by Boyan Jovanovic and Robert W. Rosenthal, in the engineering literature by Minyi Huang, Roland Malhame, and Peter E. Caines and independently and around the same time by mathematicians and Pierre-Louis Lions. In continuous time a mean-field game is typically composed of a Hamilton–Jacobi–Bellman equation that describes the
optimal control Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and operations ...
problem of an individual and a
Fokker–Planck equation In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag (physi ...
that describes the dynamics of the aggregate distribution of agents. Under fairly general assumptions it can be proved that a class of mean-field games is the limit as N \to \infty of an ''N''-player
Nash equilibrium In game theory, the Nash equilibrium is the most commonly used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy (holding all other players' strategies fixed) ...
. A related concept to that of mean-field games is "mean-field-type control". In this case, a social planner controls the distribution of states and chooses a control strategy. The solution to a mean-field-type control problem can typically be expressed as a dual adjoint Hamilton–Jacobi–Bellman equation coupled with Kolmogorov equation. Mean-field-type game theory is the multi-agent generalization of the single-agent mean-field-type control.


General Form of a Mean-field Game

The following system of equations can be used to model a typical Mean-field game: \begin -\partial_t u-\nu \Delta u+H(x,m,Du)=0 &(1)\\ \partial_t m-\nu \Delta m-\operatorname(D_p H(x,m,Du) m)=0 &(2)\\ m(0)=m_0 &(3)\\ u(x,T)=G(x,m(T)) &(4) \end The basic dynamics of this set of Equations can be explained by an average agent's optimal control problem. In a mean-field game, an average agent can control their movement \alpha to influence the population's overall location by: d X_t=\alpha_t dt+\sqrt dB_t where \nu is a parameter and B_t is a standard Brownian motion. By controlling their movement, the agent aims to minimize their overall expected cost C throughout the time period ,T/math>: C=\mathbb\left int_^TL(X_s,\alpha_s,m(s))ds+G(X_T,m(T))\right/math> where L(X_s,\alpha_s,m(s)) is the running cost at time s and G(X_T,m(T)) is the terminal cost at time T. By this definition, at time t and position x, the value function u(t,x) can be determined as: u(t,x)=\inf_\mathbb\left int_^TL(X_s,\alpha_s,m(s))ds+G(X_T,m(T))\right/math> Given the definition of the value function u(t,x), it can be tracked by the Hamilton-Jacobi equation (1). The optimal action of the average players \alpha^*(x,t) can be determined as \alpha^*(x,t)=D_p H(x,m,Du). As all agents are relatively small and cannot single-handedly change the dynamics of the population, they will individually adapt the optimal control and the population would move in that way. This is similar to a Nash Equilibrium, in which all agents act in response to a specific set of others' strategies. The optimal control solution then leads to the Kolmogorov-Fokker-Planck equation (2).


Finite State Games

A prominent category of mean field is games with a finite number of states and a finite number of actions per player. For those games, the analog of the Hamilton-Jacobi-Bellman equation is the Bellman equation, and the discrete version of the Fokker-Planck equation is the Kolmogorov equation. Specifically, for discrete-time models, the players' strategy is the Kolmogorov equation's probability matrix. In continuous time models, players have the ability to control the transition rate matrix. A discrete mean field game can be defined by a tuple \mathcal=(\mathcal, \mathcal, \, _0, \, \beta), where \mathcal is the state space, \mathcal the action set, Q_ the transition rate matrices, _0 the initial state, \ the cost functions and \beta \in \mathbb a discount factor. Furthermore, a mixed strategy is a measurable function \pi: \mathbb \times \mathbb^+ \xrightarrow[] \mathcal, that associates to each state i \in \mathcal and each time t \geq 0 a probability measure \pi_i(t) \in \mathcal on the set of possible actions. Thus \pi_(t) is the probability that, at time t a player in state i takes action a, under strategy \pi. Additionally, rate matrices \_ define the evolution over the time of population distribution, where ^(t) \in \mathcal is the population distribution at time t.


Linear-quadratic Gaussian game problem

From Caines (2009), a relatively simple model of large-scale games is the linear-quadratic Gaussian model. The individual agent's dynamics are modeled as a
stochastic differential equation A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics an ...
dX_i = (a_i X_i + b_i u_i) \,dt + \sigma_i \,dW_i, \quad i = 1, \dots, N, where X_i is the state of the i-th agent, u_i is the control of the i-th agent, and W_i are independent Wiener processes for all i = 1, \dots, N. The individual agent's cost is J_i(u_i, \nu) = \mathbb\left\, \quad \nu = \Phi\left(\frac \sum_^N X_k + \eta\right). The coupling between agents occurs in the cost function.


General and Applied Use

The paradigm of Mean Field Games has become a major connection between distributed decision-making and stochastic modeling. Starting out in the stochastic control literature, it is gaining rapid adoption across a range of applications, including: a. Financial market Carmona reviews applications in financial engineering and economics that can be cast and tackled within the framework of the MFG paradigm. Carmona argues that models in macroeconomics, contract theory, finance, …, greatly benefit from the switch to continuous time from the more traditional discrete-time models. He considers only continuous time models in his review chapter, including systemic risk, price impact, optimal execution, models for bank runs, high-frequency trading, and cryptocurrencies. b. Crowd motions MFG assumes that individuals are smart players which try to optimize their strategy and path with respect to certain costs (equilibrium with rational expectations approach). MFG models are useful to describe the anticipation phenomenon: the forward part describes the crowd evolution while the backward gives the process of how the anticipations are built. Additionally, compared to multi-agent microscopic model computations, MFG only requires lower computational costs for the macroscopic simulations. Some researchers have turned to MFG in order to model the interaction between populations and study the decision-making process of intelligent agents, including aversion and congestion behavior between two groups of pedestrians, departure time choice of morning commuters, and decision-making processes for autonomous vehicle. c. Control and mitigation of Epidemics Since the epidemic has affected society and individuals significantly, MFG and mean-field controls (MFCs) provide a perspective to study and understand the underlying population dynamics, especially in the context of the Covid-19 pandemic response. MFG has been used to extend the SIR-type dynamics with spatial effects or allowing for individuals to choose their behaviors and control their contributions to the spread of the disease. MFC is applied to design the optimal strategy to control the virus spreading within a spatial domain, control individuals’ decisions to limit their social interactions, and support the government’s nonpharmaceutical interventions.


See also

* Aggregative game *
Complex adaptive system A complex adaptive system (CAS) is a system that is ''complex'' in that it is a dynamic network of interactions, but the behavior of the ensemble may not be predictable according to the behavior of the components. It is '' adaptive'' in that the ...
* Differential game *
Evolutionary game theory Evolutionary game theory (EGT) is the application of game theory to evolving populations in biology. It defines a framework of contests, strategies, and analytics into which Darwinism, Darwinian competition can be modelled. It originated in 1973 wi ...
* Quantal response equilibrium * Potential game


References


External links

* (), 2009 IEEE Control Systems Society Bode Prize Lecture by Peter E. Caines *
Notes on Mean Field Games
from Pierre-Louis Lions' lectures at
Collège de France The (), formerly known as the or as the ''Collège impérial'' founded in 1530 by François I, is a higher education and research establishment () in France. It is located in Paris near La Sorbonne. The has been considered to be France's most ...
*
Video lectures
by Pierre-Louis Lions
Mean field games and applications
by Olivier Guéant, Jean-Michel Lasry, and Pierre-Louis Lions {{Game theory Game theory Mathematical economics