HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed
probability distribution In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
, given some observed data. This is achieved by maximizing a
likelihood function A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the ...
so that, under the assumed
statistical model A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model repre ...
, the observed data is most probable. The point in the parameter space that maximizes the likelihood function is called the maximum likelihood estimate. The logic of maximum likelihood is both intuitive and flexible, and as such the method has become a dominant means of
statistical inference Statistical inference is the process of using data analysis to infer properties of an underlying probability distribution.Upton, G., Cook, I. (2008) ''Oxford Dictionary of Statistics'', OUP. . Inferential statistical analysis infers properties of ...
. If the likelihood function is differentiable, the derivative test for finding maxima can be applied. In some cases, the first-order conditions of the likelihood function can be solved analytically; for instance, the ordinary least squares estimator for a
linear regression In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
model maximizes the likelihood when the random errors are assumed to have normal distributions with the same variance. From the perspective of Bayesian inference, MLE is generally equivalent to maximum a posteriori (MAP) estimation with a prior distribution that is
uniform A uniform is a variety of costume worn by members of an organization while usually participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency serv ...
in the region of interest. In
frequentist inference Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or pr ...
, MLE is a special case of an extremum estimator, with the objective function being the likelihood.


Principles

We model a set of observations as a random sample from an unknown
joint probability distribution A joint or articulation (or articular surface) is the connection made between bones, ossicles, or other hard structures in the body which link an animal's skeletal system into a functional whole.Saladin, Ken. Anatomy & Physiology. 7th ed. McGraw- ...
which is expressed in terms of a set of parameters. The goal of maximum likelihood estimation is to determine the parameters for which the observed data have the highest joint probability. We write the parameters governing the joint distribution as a vector \; \theta = \left \theta_,\, \theta_2,\, \ldots,\, \theta_k \right \; so that this distribution falls within a parametric family \; \ \;, where \, \Theta \, is called the '' parameter space'', a finite-dimensional subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. Evaluating the joint density at the observed data sample \; \mathbf = (y_1, y_2, \ldots, y_n) \; gives a real-valued function, \mathcal_(\theta) = \mathcal_(\theta; \mathbf) = f_(\mathbf; \theta) \;, which is called the
likelihood function A likelihood function (often simply called the likelihood) measures how well a statistical model explains observed data by calculating the probability of seeing that data under different parameter values of the model. It is constructed from the ...
. For independent random variables, f_(\mathbf; \theta) will be the product of univariate density functions: f_(\mathbf; \theta) = \prod_^n \, f_k^\mathsf(x_k; \theta) ~. The goal of maximum likelihood estimation is to find the values of the model parameters that maximize the likelihood function over the parameter space, that is: \hat = \underset\,\mathcal_(\theta\,;\mathbf) ~. Intuitively, this selects the parameter values that make the observed data most probable. The specific value ~ \hat = \hat_(\mathbf) \in \Theta ~ that maximizes the likelihood function \, \mathcal_ \, is called the maximum likelihood estimate. Further, if the function \; \hat_ : \mathbb^ \to \Theta \; so defined is measurable, then it is called the maximum likelihood estimator. It is generally a function defined over the sample space, i.e. taking a given sample as its argument. A sufficient but not necessary condition for its existence is for the likelihood function to be continuous over a parameter space \, \Theta \, that is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact, a type of agreement used by U.S. states * Blood compact, an ancient ritual of the Philippines * Compact government, a t ...
. For an
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
\, \Theta \, the likelihood function may increase without ever reaching a supremum value. In practice, it is often convenient to work with the
natural logarithm The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
of the likelihood function, called the log-likelihood: \ell(\theta\,;\mathbf) = \ln \mathcal_(\theta\,;\mathbf) ~. Since the logarithm is a
monotonic function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of or ...
, the maximum of \; \ell(\theta\,;\mathbf) \; occurs at the same value of \theta as does the maximum of \, \mathcal_ ~. If \ell(\theta\,;\mathbf) is differentiable in \, \Theta \,, sufficient conditions for the occurrence of a maximum (or a minimum) are \frac = 0, \quad \frac = 0, \quad \ldots, \quad \frac = 0 ~, known as the likelihood equations. For some models, these equations can be explicitly solved for \, \widehat \,, but in general no closed-form solution to the maximization problem is known or available, and an MLE can only be found via numerical optimization. Another problem is that in finite samples, there may exist multiple
roots A root is the part of a plant, generally underground, that anchors the plant body, and absorbs and stores water and nutrients. Root or roots may also refer to: Art, entertainment, and media * ''The Root'' (magazine), an online magazine focusin ...
for the likelihood equations. Whether the identified root \, \widehat \, of the likelihood equations is indeed a (local) maximum depends on whether the matrix of second-order partial and cross-partial derivatives, the so-called Hessian matrix \mathbf\left(\widehat\right) = \begin \left. \frac \_ & \left. \frac \_ & \dots & \left. \frac \_ \\ \left. \frac \_ & \left. \frac \_ & \dots & \left. \frac \_ \\ \vdots & \vdots & \ddots & \vdots \\ \left. \frac \_ & \left. \frac \_ & \dots & \left. \frac \_ \end ~, is negative semi-definite at \widehat, as this indicates local concavity. Conveniently, most common
probability distribution In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
s – in particular the exponential family – are logarithmically concave.


Restricted parameter space

While the domain of the likelihood function—the parameter space—is generally a finite-dimensional subset of
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, additional restrictions sometimes need to be incorporated into the estimation process. The parameter space can be expressed as \Theta = \left\ ~, where \; h(\theta) = \left h_(\theta), h_(\theta), \ldots, h_(\theta) \right\; is a
vector-valued function A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could ...
mapping \, \mathbb^ \, into \; \mathbb^ ~. Estimating the true parameter \theta belonging to \Theta then, as a practical matter, means to find the maximum of the likelihood function subject to the constraint ~h(\theta) = 0 ~. Theoretically, the most natural approach to this
constrained optimization In mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The obj ...
problem is the method of substitution, that is "filling out" the restrictions \; h_, h_, \ldots, h_ \; to a set \; h_, h_, \ldots, h_, h_, \ldots, h_ \; in such a way that \; h^ = \left h_, h_, \ldots, h_ \right\; is a
one-to-one function In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, impl ...
from \mathbb^ to itself, and reparameterize the likelihood function by setting \; \phi_ = h_(\theta_, \theta_, \ldots, \theta_) ~. Because of the equivariance of the maximum likelihood estimator, the properties of the MLE apply to the restricted estimates also. For instance, in a multivariate normal distribution the covariance matrix \, \Sigma \, must be positive-definite; this restriction can be imposed by replacing \; \Sigma = \Gamma^ \Gamma \;, where \Gamma is a real upper triangular matrix and \Gamma^ is its
transpose In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
. In practice, restrictions are usually imposed using the method of Lagrange which, given the constraints as defined above, leads to the ''restricted likelihood equations'' \frac - \frac \lambda = 0 and h(\theta) = 0 \;, where ~ \lambda = \left \lambda_, \lambda_, \ldots, \lambda_\right\mathsf ~ is a column-vector of
Lagrange multiplier In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function (mathematics), function subject to constraint (mathematics), equation constraints (i.e., subject to the conditio ...
s and \; \frac \; is the
Jacobian matrix In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. If this matrix is square, that is, if the number of variables equals the number of component ...
of partial derivatives. Naturally, if the constraints are not binding at the maximum, the Lagrange multipliers should be zero. This in turn allows for a statistical test of the "validity" of the constraint, known as the Lagrange multiplier test.


Nonparametric maximum likelihood estimation

Nonparametric maximum likelihood estimation can be performed using the empirical likelihood.


Properties

A maximum likelihood estimator is an extremum estimator obtained by maximizing, as a function of ''θ'', the
objective function In mathematical optimization and decision theory, a loss function or cost function (sometimes also called an error function) is a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost ...
\widehat(\theta\,;x). If the data are independent and identically distributed, then we have \widehat(\theta\,;x)= \sum_^n \ln f(x_i\mid\theta), this being the sample analogue of the expected log-likelihood \ell(\theta) = \operatorname , \ln f(x_i\mid\theta) \,/math>, where this expectation is taken with respect to the true density. Maximum-likelihood estimators have no optimum properties for finite samples, in the sense that (when evaluated on finite samples) other estimators may have greater concentration around the true parameter-value. However, like other estimation methods, maximum likelihood estimation possesses a number of attractive limiting properties: As the sample size increases to infinity, sequences of maximum likelihood estimators have these properties: *
Consistency In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
: the sequence of MLEs converges in probability to the value being estimated. * Equivariance: If \hat is the maximum likelihood estimator for \theta , and if g(\theta) is a bijective transform of \theta , then the maximum likelihood estimator for \alpha = g(\theta) is \hat = g(\hat ) . The equivariance property can be generalized to non-bijective transforms, although it applies in that case on the maximum of an induced likelihood function which is not the true likelihood in general. *
Efficiency Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste. ...
, i.e. it achieves the Cramér–Rao lower bound when the sample size tends to infinity. This means that no consistent estimator has lower asymptotic
mean squared error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference betwee ...
than the MLE (or other estimators attaining this bound), which also means that MLE has asymptotic normality. * Second-order efficiency after correction for bias.


Consistency

Under the conditions outlined below, the maximum likelihood estimator is
consistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
. The consistency means that if the data were generated by f(\cdot\,;\theta_0) and we have a sufficiently large number of observations ''n'', then it is possible to find the value of ''θ''0 with arbitrary precision. In mathematical terms this means that as ''n'' goes to infinity the estimator \widehat converges in probability to its true value: \widehat_\mathrm\ \xrightarrow\ \theta_0. Under slightly stronger conditions, the estimator converges almost surely (or ''strongly''): \widehat_\mathrm\ \xrightarrow\ \theta_0. In practical applications, data is never generated by f(\cdot\,;\theta_0). Rather, f(\cdot\,;\theta_0) is a model, often in idealized form, of the process generated by the data. It is a common aphorism in statistics that '' all models are wrong''. Thus, true consistency does not occur in practical applications. Nevertheless, consistency is often considered to be a desirable property for an estimator to have. To establish consistency, the following conditions are sufficient. The dominance condition can be employed in the case of i.i.d. observations. In the non-i.i.d. case, the uniform convergence in probability can be checked by showing that the sequence \widehat(\theta\mid x) is stochastically equicontinuous. If one wants to demonstrate that the ML estimator \widehat converges to ''θ''0 almost surely, then a stronger condition of uniform convergence almost surely has to be imposed: \sup_ \left\, \;\widehat(\theta\mid x) - \ell(\theta)\;\right\, \ \xrightarrow\ 0. Additionally, if (as assumed above) the data were generated by f(\cdot\,;\theta_0), then under certain conditions, it can also be shown that the maximum likelihood estimator converges in distribution to a normal distribution. Specifically,By Theorem 3.3 in \sqrt \left(\widehat_\mathrm - \theta_0\right)\ \xrightarrow\ \mathcal\left(0,\, I^\right) where is the Fisher information matrix.


Functional invariance

The maximum likelihood estimator selects the parameter value which gives the observed data the largest possible probability (or probability density, in the continuous case). If the parameter consists of a number of components, then we define their separate maximum likelihood estimators, as the corresponding component of the MLE of the complete parameter. Consistent with this, if \widehat is the MLE for \theta, and if g(\theta) is any transformation of \theta, then the MLE for \alpha=g(\theta) is by definition \widehat = g(\,\widehat\,). \, It maximizes the so-called profile likelihood: \bar(\alpha) = \sup_ L(\theta). \, The MLE is also equivariant with respect to certain transformations of the data. If y=g(x) where g is one to one and does not depend on the parameters to be estimated, then the density functions satisfy f_Y(y) = f_X(g^(y)) \, , (g^(y))^, and hence the likelihood functions for X and Y differ only by a factor that does not depend on the model parameters. For example, the MLE parameters of the log-normal distribution are the same as those of the normal distribution fitted to the logarithm of the data. In fact, in the log-normal case if X\sim\mathcal(0, 1), then Y=g(X)=e^ follows a log-normal distribution. The density of Y follows with f_X standard Normal and g^(y) = \log(y) , , (g^(y))^, = \frac for y > 0.


Efficiency

As assumed above, if the data were generated by ~f(\cdot\,;\theta_0)~, then under certain conditions, it can also be shown that the maximum likelihood estimator converges in distribution to a normal distribution. It is -consistent and asymptotically efficient, meaning that it reaches the Cramér–Rao bound. Specifically, \sqrt \, \left( \widehat_\text - \theta_0 \right)\ \ \xrightarrow\ \ \mathcal \left( 0,\ \mathcal^ \right) ~, where ~\mathcal~ is the Fisher information matrix: \mathcal_ = \operatorname \, \biggl \; - \; \biggr~. In particular, it means that the
bias Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individ ...
of the maximum likelihood estimator is equal to zero up to the order .


Second-order efficiency after correction for bias

However, when we consider the higher-order terms in the expansion of the distribution of this estimator, it turns out that has bias of order . This bias is equal to (componentwise) b_h \; \equiv \; \operatorname \biggl \; \left( \widehat\theta_\mathrm - \theta_0 \right)_h \; \biggr \; = \; \frac \, \sum_^m \; \mathcal^ \; \mathcal^ \left( \frac \, K_ \; + \; J_ \right) where \mathcal^ (with superscripts) denotes the (''j,k'')-th component of the ''inverse'' Fisher information matrix \mathcal^, and \frac \, K_ \; + \; J_ \; = \; \operatorname\,\biggl ; \frac12 \frac + \frac\,\frac \; \biggr~ . Using these formulae it is possible to estimate the second-order bias of the maximum likelihood estimator, and ''correct'' for that bias by subtracting it: \widehat^*_\text = \widehat_\text - \widehat ~ . This estimator is unbiased up to the terms of order , and is called the bias-corrected maximum likelihood estimator. This bias-corrected estimator is (at least within the curved exponential family), meaning that it has minimal mean squared error among all second-order bias-corrected estimators, up to the terms of the order  . It is possible to continue this process, that is to derive the third-order bias-correction term, and so on. However, the maximum likelihood estimator is ''not'' third-order efficient.


Relation to Bayesian inference

A maximum likelihood estimator coincides with the most probable Bayesian estimator given a
uniform A uniform is a variety of costume worn by members of an organization while usually participating in that organization's activity. Modern uniforms are most often worn by armed forces and paramilitary organizations such as police, emergency serv ...
prior distribution on the parameters. Indeed, the maximum a posteriori estimate is the parameter that maximizes the probability of given the data, given by Bayes' theorem: \operatorname(\theta\mid x_1,x_2,\ldots,x_n) = \frac where \operatorname(\theta) is the prior distribution for the parameter and where \operatorname(x_1,x_2,\ldots,x_n) is the probability of the data averaged over all parameters. Since the denominator is independent of , the Bayesian estimator is obtained by maximizing f(x_1,x_2,\ldots,x_n\mid\theta)\operatorname(\theta) with respect to . If we further assume that the prior \operatorname(\theta) is a uniform distribution, the Bayesian estimator is obtained by maximizing the likelihood function f(x_1,x_2,\ldots,x_n\mid\theta). Thus the Bayesian estimator coincides with the maximum likelihood estimator for a uniform prior distribution \operatorname(\theta).


Application of maximum-likelihood estimation in Bayes decision theory

In many practical applications in
machine learning Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task ( ...
, maximum-likelihood estimation is used as the model for parameter estimation. The Bayesian Decision theory is about designing a classifier that minimizes total expected risk, especially, when the costs (the loss function) associated with different decisions are equal, the classifier is minimizing the error over the whole distribution. Thus, the Bayes Decision Rule is stated as :"decide \;w_1\; if ~\operatorname(w_1, x) \; > \; \operatorname(w_2, x)~;~ otherwise decide \;w_2\;" where \;w_1\,, w_2\; are predictions of different classes. From a perspective of minimizing error, it can also be stated as w = \underset \; \int_^\infty \operatorname(\text\mid x)\operatorname(x)\,\operatornamex~ where \operatorname(\text\mid x) = \operatorname(w_1\mid x)~ if we decide \;w_2\; and \;\operatorname(\text\mid x) = \operatorname(w_2\mid x)\; if we decide \;w_1\;. By applying
Bayes' theorem Bayes' theorem (alternatively Bayes' law or Bayes' rule, after Thomas Bayes) gives a mathematical rule for inverting Conditional probability, conditional probabilities, allowing one to find the probability of a cause given its effect. For exampl ...
\operatorname(w_i \mid x) = \frac, and if we further assume the zero-or-one loss function, which is a same loss for all errors, the Bayes Decision rule can be reformulated as: h_\text = \underset \, \bigl , \operatorname(x\mid w)\,\operatorname(w) \,\bigr;, where h_\text is the prediction and \;\operatorname(w)\; is the
prior probability A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the ...
.


Relation to minimizing Kullback–Leibler divergence and cross entropy

Finding \hat \theta that maximizes the likelihood is asymptotically equivalent to finding the \hat \theta that defines a probability distribution (Q_) that has a minimal distance, in terms of Kullback–Leibler divergence, to the real probability distribution from which our data were generated (i.e., generated by P_). In an ideal world, P and Q are the same (and the only thing unknown is \theta that defines P), but even if they are not and the model we use is misspecified, still the MLE will give us the "closest" distribution (within the restriction of a model Q that depends on \hat \theta) to the real distribution P_.


Examples


Discrete uniform distribution

Consider a case where ''n'' tickets numbered from 1 to ''n'' are placed in a box and one is selected at random (''see uniform distribution''); thus, the sample size is 1. If ''n'' is unknown, then the maximum likelihood estimator \widehat of ''n'' is the number ''m'' on the drawn ticket. (The likelihood is 0 for ''n'' < ''m'', for ''n'' ≥ ''m'', and this is greatest when ''n'' = ''m''. Note that the maximum likelihood estimate of ''n'' occurs at the lower extreme of possible values , rather than somewhere in the "middle" of the range of possible values, which would result in less bias.) The
expected value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
of the number ''m'' on the drawn ticket, and therefore the expected value of \widehat, is (''n'' + 1)/2. As a result, with a sample size of 1, the maximum likelihood estimator for ''n'' will systematically underestimate ''n'' by (''n'' − 1)/2.


Discrete distribution, finite parameter space

Suppose one wishes to determine just how biased an unfair coin is. Call the probability of tossing a '
head A head is the part of an organism which usually includes the ears, brain, forehead, cheeks, chin, eyes, nose, and mouth, each of which aid in various sensory functions such as sight, hearing, smell, and taste. Some very simple ani ...
' ''p''. The goal then becomes to determine ''p''. Suppose the coin is tossed 80 times: i.e. the sample might be something like ''x''1 = H, ''x''2 = T, ..., ''x''80 = T, and the count of the number of heads "H" is observed. The probability of tossing tails is 1 − ''p'' (so here ''p'' is ''θ'' above). Suppose the outcome is 49 heads and 31  tails, and suppose the coin was taken from a box containing three coins: one which gives heads with probability ''p'' = , one which gives heads with probability ''p'' =  and another which gives heads with probability ''p'' = . The coins have lost their labels, so which one it was is unknown. Using maximum likelihood estimation, the coin that has the largest likelihood can be found, given the data that were observed. By using the
probability mass function In probability and statistics, a probability mass function (sometimes called ''probability function'' or ''frequency function'') is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes i ...
of the
binomial distribution In probability theory and statistics, the binomial distribution with parameters and is the discrete probability distribution of the number of successes in a sequence of statistical independence, independent experiment (probability theory) ...
with sample size equal to 80, number successes equal to 49 but for different values of ''p'' (the "probability of success"), the likelihood function (defined below) takes one of three values: \begin \operatorname\bigl ;\mathrm = 49 \mid p=\tfrac\;\bigr& = \binom(\tfrac)^(1-\tfrac)^ \approx 0.000, \\ pt\operatorname\bigl ;\mathrm = 49 \mid p=\tfrac\;\bigr& = \binom(\tfrac)^(1-\tfrac)^ \approx 0.012, \\ pt\operatorname\bigl ;\mathrm = 49 \mid p=\tfrac\;\bigr& = \binom(\tfrac)^(1-\tfrac)^ \approx 0.054~. \end The likelihood is maximized when  = , and so this is the ''maximum likelihood estimate'' for .


Discrete distribution, continuous parameter space

Now suppose that there was only one coin but its could have been any value The likelihood function to be maximised is L(p) = f_D(\mathrm = 49 \mid p) = \binom p^(1 - p)^~, and the maximisation is over all possible values One way to maximize this function is by differentiating with respect to and setting to zero: \begin 0 & = \frac \left( \binom p^(1-p)^ \right)~, \\ pt0 & = 49 p^(1-p)^ - 31 p^(1-p)^ \\ pt & = p^(1-p)^\left 49 (1-p) - 31 p \right \\ pt & = p^(1-p)^\left 49 - 80 p \right. \end This is a product of three terms. The first term is 0 when  = 0. The second is 0 when  = 1. The third is zero when  = . The solution that maximizes the likelihood is clearly  =  (since  = 0 and  = 1 result in a likelihood of 0). Thus the ''maximum likelihood estimator'' for is . This result is easily generalized by substituting a letter such as in the place of 49 to represent the observed number of 'successes' of our
Bernoulli trial In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is ...
s, and a letter such as in the place of 80 to represent the number of Bernoulli trials. Exactly the same calculation yields which is the maximum likelihood estimator for any sequence of Bernoulli trials resulting in 'successes'.


Continuous distribution, continuous parameter space

For the
normal distribution In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac ...
\mathcal(\mu, \sigma^2) which has
probability density function In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
f(x\mid \mu,\sigma^2) = \frac \exp\left(-\frac \right), the corresponding
probability density function In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a Function (mathematics), function whose value at any given sample (or point) in the sample space (the s ...
for a sample of independent identically distributed normal random variables (the likelihood) is f(x_1,\ldots,x_n \mid \mu,\sigma^2) = \prod_^n f( x_i\mid \mu, \sigma^2) = \left( \frac \right)^ \exp\left( -\frac\right). This family of distributions has two parameters: ; so we maximize the likelihood, \mathcal (\mu,\sigma^2) = f(x_1,\ldots,x_n \mid \mu, \sigma^2), over both parameters simultaneously, or if possible, individually. Since the
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
function itself is a continuous
strictly increasing In mathematical writing, the term strict refers to the property of excluding equality and equivalence and often occurs in the context of inequality and monotonic functions. It is often attached to a technical term to indicate that the exclusiv ...
function over the range of the likelihood, the values which maximize the likelihood will also maximize its logarithm (the log-likelihood itself is not necessarily strictly increasing). The log-likelihood can be written as follows: \log\Bigl( \mathcal (\mu,\sigma^2)\Bigr) = -\frac \log(2\pi\sigma^2) - \frac \sum_^n (\,x_i-\mu\,)^2 (Note: the log-likelihood is closely related to information entropy and Fisher information.) We now compute the derivatives of this log-likelihood as follows. \begin 0 & = \frac \log\Bigl( \mathcal (\mu,\sigma^2)\Bigr) = 0 - \frac. \end where \bar is the sample mean. This is solved by \widehat\mu = \bar = \sum^n_ \frac. This is indeed the maximum of the function, since it is the only turning point in and the second derivative is strictly less than zero. Its
expected value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
is equal to the parameter of the given distribution, \operatorname\bigl ;\widehat\mu\;\bigr= \mu, \, which means that the maximum likelihood estimator \widehat\mu is unbiased. Similarly we differentiate the log-likelihood with respect to and equate to zero: \begin 0 & = \frac \log\Bigl( \mathcal (\mu,\sigma^2)\Bigr) = -\frac + \frac \sum_^ (\,x_i-\mu\,)^2. \end which is solved by \widehat\sigma^2 = \frac \sum_^n(x_i-\mu)^2. Inserting the estimate \mu = \widehat\mu we obtain \widehat\sigma^2 = \frac \sum_^n (x_i - \bar)^2 = \frac\sum_^n x_i^2 -\frac\sum_^n\sum_^n x_i x_j. To calculate its expected value, it is convenient to rewrite the expression in terms of zero-mean random variables ( statistical error) \delta_i \equiv \mu - x_i. Expressing the estimate in these variables yields \widehat\sigma^2 = \frac \sum_^n (\mu - \delta_i)^2 -\frac\sum_^n\sum_^n (\mu - \delta_i)(\mu - \delta_j). Simplifying the expression above, utilizing the facts that \operatorname\bigl ;\delta_i\;\bigr= 0 and \operatorname\bigl ;\delta_i^2\;\bigr= \sigma^2 , allows us to obtain \operatorname\bigl ;\widehat\sigma^2\;\bigr \frac\sigma^2. This means that the estimator \widehat\sigma^2 is biased for \sigma^2. It can also be shown that \widehat\sigma is biased for \sigma, but that both \widehat\sigma^2 and \widehat\sigma are consistent. Formally we say that the ''maximum likelihood estimator'' for \theta=(\mu,\sigma^2) is \widehat = \left(\widehat,\widehat^2\right). In this case the MLEs could be obtained individually. In general this may not be the case, and the MLEs would have to be obtained simultaneously. The normal log-likelihood at its maximum takes a particularly simple form: \log\Bigl( \mathcal(\widehat\mu,\widehat\sigma)\Bigr) = \frac \bigl(\,\log(2\pi\widehat\sigma^2) +1\,\bigr) This maximum log-likelihood can be shown to be the same for more general least squares, even for non-linear least squares. This is often used in determining likelihood-based approximate confidence intervals and confidence regions, which are generally more accurate than those using the asymptotic normality discussed above.


Non-independent variables

It may be the case that variables are correlated, or more generally, not independent. Two random variables y_1 and y_2 are independent only if their joint probability density function is the product of the individual probability density functions, i.e. f(y_1,y_2) = f(y_1) f(y_2)\, Suppose one constructs an order-''n'' Gaussian vector out of random variables (y_1,\ldots,y_n), where each variable has means given by (\mu_1, \ldots, \mu_n). Furthermore, let the covariance matrix be denoted by \mathit\Sigma. The joint probability density function of these ''n'' random variables then follows a multivariate normal distribution given by: f(y_1,\ldots,y_n) = \frac \exp\left( -\frac \left _1-\mu_1,\ldots,y_n-\mu_n\rightmathit\Sigma^ \left _1-\mu_1,\ldots,y_n-\mu_n\right\mathrm \right) In the bivariate case, the joint probability density function is given by: f(y_1,y_2) = \frac \exp\left -\frac \left(\frac - \frac + \frac\right) \right In this and other cases where a joint density function exists, the likelihood function is defined as above, in the section " principles," using this density.


Example

X_1,\ X_2,\ldots,\ X_m are counts in cells / boxes 1 up to m; each box has a different probability (think of the boxes being bigger or smaller) and we fix the number of balls that fall to be n:x_1+x_2+\cdots+x_m=n. The probability of each box is p_i, with a constraint: p_1+p_2+\cdots+p_m=1. This is a case in which the X_i ''s'' are not independent, the joint probability of a vector x_1,\ x_2,\ldots,x_m is called the multinomial and has the form: f(x_1,x_2,\ldots,x_m\mid p_1,p_2,\ldots,p_m)=\frac\prod p_i^= \binom p_1^ p_2^ \cdots p_m^ Each box taken separately against all the other boxes is a binomial and this is an extension thereof. The log-likelihood of this is: \ell(p_1,p_2,\ldots,p_m)=\log n!-\sum_^m \log x_i!+\sum_^m x_i\log p_i The constraint has to be taken into account and use the Lagrange multipliers: L(p_1,p_2,\ldots,p_m,\lambda)=\ell(p_1,p_2,\ldots,p_m)+\lambda\left(1-\sum_^m p_i\right) By posing all the derivatives to be 0, the most natural estimate is derived \hat_i=\frac Maximizing log likelihood, with and without constraints, can be an unsolvable problem in closed form, then we have to use iterative procedures.


Iterative procedures

Except for special cases, the likelihood equations \frac = 0 cannot be solved explicitly for an estimator \widehat = \widehat(\mathbf). Instead, they need to be solved iteratively: starting from an initial guess of \theta (say \widehat_), one seeks to obtain a convergent sequence \left\. Many methods for this kind of
optimization problem In mathematics, engineering, computer science and economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goo ...
are available, but the most commonly used ones are algorithms based on an updating formula of the form \widehat_ = \widehat_ + \eta_ \mathbf_r\left(\widehat\right) where the vector \mathbf_\left(\widehat\right) indicates the descent direction of the rth "step," and the scalar \eta_ captures the "step length," also known as the learning rate.


Gradient descent method

(Note: here it is a maximization problem, so the sign before gradient is flipped) \eta_r\in \R^+ that is small enough for convergence and \mathbf_r\left(\widehat\right) = \nabla\ell\left(\widehat_r;\mathbf\right) Gradient descent method requires to calculate the gradient at the rth iteration, but no need to calculate the inverse of second-order derivative, i.e., the Hessian matrix. Therefore, it is computationally faster than Newton-Raphson method.


Newton–Raphson method

\eta_r = 1 and \mathbf_r\left(\widehat\right) = -\mathbf^_r\left(\widehat\right) \mathbf_r\left(\widehat\right) where \mathbf_(\widehat) is the score and \mathbf^_r \left(\widehat\right) is the inverse of the Hessian matrix of the log-likelihood function, both evaluated the rth iteration. But because the calculation of the Hessian matrix is computationally costly, numerous alternatives have been proposed. The popular Berndt–Hall–Hall–Hausman algorithm approximates the Hessian with the outer product of the expected gradient, such that \mathbf_r\left(\widehat\right) = - \left \frac \sum_^n \frac \left( \frac \right)^ \right \mathbf_r \left(\widehat\right)


Quasi-Newton methods

Other quasi-Newton methods use more elaborate secant updates to give approximation of Hessian matrix.


Davidon–Fletcher–Powell formula

DFP formula finds a solution that is symmetric, positive-definite and closest to the current approximate value of second-order derivative: \mathbf_ = \left(I - \gamma_k y_k s_k^\mathsf\right) \mathbf_k \left(I - \gamma_k s_k y_k^\mathsf\right) + \gamma_k y_k y_k^\mathsf, where y_k = \nabla\ell(x_k + s_k) - \nabla\ell(x_k), \gamma_k = \frac, s_k = x_ - x_k.


Broyden–Fletcher–Goldfarb–Shanno algorithm

BFGS also gives a solution that is symmetric and positive-definite: B_ = B_k + \frac - \frac\ , where y_k = \nabla\ell(x_k + s_k) - \nabla\ell(x_k), s_k = x_ - x_k. BFGS method is not guaranteed to converge unless the function has a quadratic Taylor expansion near an optimum. However, BFGS can have acceptable performance even for non-smooth optimization instances


Fisher's scoring

Another popular method is to replace the Hessian with the Fisher information matrix, \mathcal(\theta) = \operatorname\left mathbf_r \left(\widehat\right)\right/math>, giving us the Fisher scoring algorithm. This procedure is standard in the estimation of many methods, such as generalized linear models. Although popular, quasi-Newton methods may converge to a
stationary point In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of a function, graph of the function where the function's derivative is zero. Informally, it is a point where the ...
that is not necessarily a local or global maximum, but rather a local minimum or a
saddle point In mathematics, a saddle point or minimax point is a Point (geometry), point on the surface (mathematics), surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a Critical point (mathematics), ...
. Therefore, it is important to assess the validity of the obtained solution to the likelihood equations, by verifying that the Hessian, evaluated at the solution, is both negative definite and well-conditioned.


History

Early users of maximum likelihood include
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; ; ; 30 April 177723 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory and ...
,
Pierre-Simon Laplace Pierre-Simon, Marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summariz ...
, Thorvald N. Thiele, and Francis Ysidro Edgeworth. It was
Ronald Fisher Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who a ...
however, between 1912 and 1922, who singlehandedly created the modern version of the method. Maximum-likelihood estimation finally transcended
heuristic A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless ...
justification in a proof published by Samuel S. Wilks in 1938, now called Wilks' theorem. The theorem shows that the error in the logarithm of likelihood values for estimates from multiple independent observations is asymptotically ''χ'' 2-distributed, which enables convenient determination of a confidence region around any estimate of the parameters. The only difficult part of Wilks' proof depends on the expected value of the Fisher information matrix, which is provided by a theorem proven by Fisher. Wilks continued to improve on the generality of the theorem throughout his life, with his most general proof published in 1962. Reviews of the development of maximum likelihood estimation have been provided by a number of authors.


See also


Related concepts

* Akaike information criterion: a criterion to compare statistical models, based on MLE * Extremum estimator: a more general class of estimators to which MLE belongs * Fisher information: information matrix, its relationship to covariance matrix of ML estimates *
Mean squared error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference betwee ...
: a measure of how 'good' an estimator of a distributional parameter is (be it the maximum likelihood estimator or some other estimator) * RANSAC: a method to estimate parameters of a mathematical model given data that contains outliers * Rao–Blackwell theorem: yields a process for finding the best possible unbiased estimator (in the sense of having minimal
mean squared error In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference betwee ...
); the MLE is often a good starting place for the process * Wilks' theorem: provides a means of estimating the size and shape of the region of roughly equally-probable estimates for the population's parameter values, using the information from a single sample, using a chi-squared distribution


Other estimation methods

* Generalized method of moments: methods related to the likelihood equation in maximum likelihood estimation * M-estimator: an approach used in robust statistics * Maximum a posteriori (MAP) estimator: for a contrast in the way to calculate estimators when prior knowledge is postulated *
Maximum spacing estimation In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate parametric model, statistical model. The method requires maximization of the geometr ...
: a related method that is more robust in many situations * Maximum entropy estimation * Method of moments (statistics): another popular method for finding parameters of distributions *
Method of support In statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying st ...
, a variation of the maximum likelihood technique * Minimum-distance estimation * Partial likelihood methods for panel data * Quasi-maximum likelihood estimator: an MLE estimator that is misspecified, but still consistent * Restricted maximum likelihood: a variation using a likelihood function calculated from a transformed set of data


References


Further reading

* * * * * * * * *


External links

* Tilevik, Andreas (2022)
Maximum likelihood vs least squares in linear regression
(video) * * * * * {{DEFAULTSORT:Maximum likelihood M-estimators Probability distribution fitting