Maximal functions appear in many forms in
harmonic analysis
Harmonic analysis is a branch of mathematics concerned with the representation of functions or signals as the superposition of basic waves, and the study of and generalization of the notions of Fourier series and Fourier transforms (i.e. an e ...
(an area of
mathematics). One of the most important of these is the
Hardy–Littlewood maximal function In mathematics, the Hardy–Littlewood maximal operator ''M'' is a significant non-linear operator used in real analysis and harmonic analysis.
Definition
The operator takes a locally integrable function ''f'' : R''d'' → C and returns another f ...
. They play an important role in understanding, for example, the differentiability properties of functions, singular integrals and partial differential equations. They often provide a deeper and more simplified approach to understanding problems in these areas than other methods.
The Hardy–Littlewood maximal function
In their original paper,
G.H. Hardy
Godfrey Harold Hardy (7 February 1877 – 1 December 1947) was an English mathematician, known for his achievements in number theory and mathematical analysis. In biology, he is known for the Hardy–Weinberg principle, a basic principle of pop ...
and
J.E. Littlewood
John Edensor Littlewood (9 June 1885 – 6 September 1977) was a British mathematician. He worked on topics relating to analysis, number theory, and differential equations, and had lengthy collaborations with G. H. Hardy, Srinivasa Ram ...
explained their maximal inequality in the language of
cricket
Cricket is a bat-and-ball game played between two teams of eleven players on a field at the centre of which is a pitch with a wicket at each end, each comprising two bails balanced on three stumps. The batting side scores runs by st ...
averages. Given a function ''f'' defined on R
''n'', the uncentred Hardy–Littlewood maximal function ''Mf'' of ''f'' is defined as
:
at each ''x'' in R
''n''. Here, the supremum is taken over balls ''B'' in R
''n'' which contain the point ''x'' and , ''B'', denotes the
measure of ''B'' (in this case a multiple of the radius of the ball raised to the power ''n''). One can also study the centred maximal function, where the supremum is taken just over balls ''B'' which have centre ''x''. In practice there is little difference between the two.
Basic properties
The following statements are central to the utility of the Hardy–Littlewood maximal operator.
* (a) For ''f'' ∈ ''L
p''(R
''n'') (1 ≤ ''p'' ≤ ∞), ''Mf'' is finite almost everywhere.
* (b) If ''f'' ∈ ''L
1''(R
''n''), then there exists a ''c'' such that, for all α > 0,
::
*(c) If ''f'' ∈ ''L
p''(R
''n'') (1 < ''p'' ≤ ∞), then ''Mf'' ∈ ''L
p''(R
''n'') and
::
:where ''A'' depends only on ''p'' and ''c''.
Properties (b) is called a weak-type bound of ''Mf''. For an integrable function, it corresponds to the elementary
Markov inequality
In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, ...
; however, ''Mf'' is never integrable, unless ''f'' = 0 almost everywhere, so that the proof of the weak bound (b) for ''Mf'' requires a less elementary argument from geometric measure theory, such as the
Vitali covering lemma
In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The co ...
. Property (c) says the operator ''M'' is bounded on ''L
p''(R
''n''); it is clearly true when ''p'' = ∞, since we cannot take an average of a bounded function and obtain a value larger than the largest value of the function. Property (c) for all other values of ''p'' can then be deduced from these two facts by an
interpolation argument.
It is worth noting (c) does not hold for ''p'' = 1. This can be easily proved by calculating ''M''χ, where χ is the characteristic function of the unit ball centred at the origin.
Applications
The Hardy–Littlewood maximal operator appears in many places but some of its most notable uses are in the proofs of the
Lebesgue differentiation theorem
In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis, which states that for almost every point, the value of an integrable function is the limit of infinitesimal averages taken about the point. The theorem is named fo ...
and
Fatou's theorem and in the theory of
singular integral operators.
Non-tangential maximal functions
The non-tangential maximal function takes a function ''F'' defined on the upper-half plane
:
and produces a function ''F*'' defined on R
''n'' via the expression
:
Observe that for a fixed ''x'', the set
is a cone in
with vertex at (''x'',0) and axis perpendicular to the boundary of R
''n''. Thus, the non-tangential maximal operator simply takes the supremum of the function ''F'' over a cone with vertex at the boundary of R
''n''.
Approximations of the identity
One particularly important form of functions ''F'' in which study of the non-tangential maximal function is important is formed from an
approximation to the identity. That is, we fix an integrable smooth function Φ on R
''n'' such that
:
and set
:
for ''t'' > 0. Then define
:
One can show
[ that
:
and consequently obtain that converges to ''f'' in ''Lp''(R''n'') for all 1 ≤ ''p'' < ∞. Such a result can be used to show that the harmonic extension of an ''Lp''(R''n'') function to the upper-half plane converges non-tangentially to that function. More general results can be obtained where the Laplacian is replaced by an elliptic operator via similar techniques.
Moreover, with some appropriate conditions on , one can get that
:.
]
The sharp maximal function
For a locally integrable function ''f'' on R''n'', the sharp maximal function is defined as
:
for each ''x'' in R''n'', where the supremum is taken over all balls(nice) ''B'' and is the integral average of over the ball .
The sharp function can be used to obtain a point-wise inequality regarding singular integrals. Suppose we have an operator ''T'' which is bounded on ''L2''(R''n''), so we have
:
for all smooth and compactly supported ''f''. Suppose also that we can realize ''T'' as convolution against a kernel ''K'' in the sense that, whenever ''f'' and ''g'' are smooth and have disjoint support
:
Finally we assume a size and smoothness condition on the kernel ''K'':
:
when . Then for a fixed ''r'' > 1, we have
:
for all ''x'' in R''n''.[
]
Maximal functions in ergodic theory
Let be a probability space, and ''T'' : ''X'' → ''X'' a measure-preserving endomorphism of ''X''. The maximal function of ''f'' ∈ ''L1''(''X'',''m'') is
:
The maximal function of ''f'' verifies a weak bound analogous to the Hardy–Littlewood maximal inequality:
:
that is a restatement of the maximal ergodic theorem.
Martingale Maximal Function
If is a martingale
Martingale may refer to:
* Martingale (probability theory), a stochastic process in which the conditional expectation of the next value, given the current and preceding values, is the current value
* Martingale (tack) for horses
* Martingale (coll ...
, we can define the martingale maximal function by . If exists, many results that hold in the classical case (e.g. boundedness in