Matalon–Matkowsky–Clavin–Joulin Theory
   HOME

TheInfoList



OR:

The Matalon–Matkowsky–Clavin–Joulin theory refers to a theoretical hydrodynamic model of a premixed flame with a large-amplitude flame wrinkling, developed independently by Moshe Matalon & Bernard J. Matkowsky and
Paul Clavin Paul Clavin is a French scientist at Aix-Marseille University, working in the field of combustion and statistical mechanics. He is the founder of Institute for Research on Nonequilibrium Phenomena (IRPHE). Biography Paul Clavin obtained his f ...
&
Guy Joulin Guy Joulin is a French scientist at Aix-Marseille University who works in the field of combustion. Biography Guy Joulin obtained his PhD degree from University of Poitiers in 1979 under the supervision of Paul Clavin. Joulin is the re ...
, following the pioneering study by
Paul Clavin Paul Clavin is a French scientist at Aix-Marseille University, working in the field of combustion and statistical mechanics. He is the founder of Institute for Research on Nonequilibrium Phenomena (IRPHE). Biography Paul Clavin obtained his f ...
and Forman A. Williams and by Pierre Pelcé and
Paul Clavin Paul Clavin is a French scientist at Aix-Marseille University, working in the field of combustion and statistical mechanics. He is the founder of Institute for Research on Nonequilibrium Phenomena (IRPHE). Biography Paul Clavin obtained his f ...
. The theory, for the first time, calculated the burning rate of the curved flame that differs from the burning rate of the planar flame due to flame stretch, associated with the flame curvature and the strain imposed on the flame by the flow field.


Burning rate formula

According to Matalon–Matkowsky–Clavin–Joulin theory, if S_L and \delta_L are the laminar burning speed and thickness of a planar flame (and \tau_L=D_/S_L^2 be the corresponding flame residence time with D_ being the
thermal diffusivity In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material and has SI, SI units of m2/s. It is an intensive ...
in the unburnt gas), then the burning speed S_T for the curved flame with respect to the unburnt gas is given by :\frac = 1 + \mathcal_c \delta_L \nabla \cdot \mathbf + \mathcal_s \tau_L \mathbf\mathbf n: \nabla\mathbf v where \mathbf is the unit normal to the flame surface (pointing towards the burnt gas side), \mathbf is the flow velocity field evaluated at the flame surface and \mathcal_c and \mathcal_s are the two
Markstein number In combustion engineering and explosion studies, the Markstein number (named after George H. Markstein who first proposed the notion in 1951) characterizes the effect of local heat release of a propagating flame on variations in the surface topolo ...
s, associated with the curvature term \nabla \cdot \mathbf and the term \mathbf\mathbf n:\nabla\mathbf v corresponding to flow strain imposed on the flame.


See also

*
G equation G, or g, is the seventh letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages, and others worldwide. Its name in English is ''gee'' (pronounced ), plural ''gees''. The lower ...
*
Markstein number In combustion engineering and explosion studies, the Markstein number (named after George H. Markstein who first proposed the notion in 1951) characterizes the effect of local heat release of a propagating flame on variations in the surface topolo ...


References

Fluid dynamics Combustion {{improve categories, date=September 2024