Malleable Iron
   HOME

TheInfoList



OR:

Malleable iron is cast as
white iron White is the lightest color and is achromatic (having no chroma). It is the color of objects such as snow, chalk, and milk, and is the opposite of black. White objects fully (or almost fully) reflect and scatter all the visible wavelen ...
, the structure being a
metastable In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of th ...
in a pearlitic matrix. Through an annealing heat treatment, the
brittle A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. ...
structure as first cast is transformed into the
malleable Ductility refers to the ability of a material to sustain significant plastic deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversi ...
form. Carbon agglomerates into small roughly spherical aggregates of
graphite Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
, leaving a matrix of ferrite or pearlite according to the exact heat treatment used. Three basic types of malleable iron are recognized within the casting industry: blackheart, whiteheart, and pearlitic.


History

Malleable iron was used as early as the 4th century BCE, and archaeologists have found malleable iron artifacts made in China between 4th century BCE and 9th century CE. By the
Tang dynasty The Tang dynasty (, ; zh, c=唐朝), or the Tang Empire, was an Dynasties of China, imperial dynasty of China that ruled from 618 to 907, with an Wu Zhou, interregnum between 690 and 705. It was preceded by the Sui dynasty and followed ...
, the use of malleable iron in China waned, although there are malleable iron artifacts dating to the 9th century. Malleable iron is mentioned in England in a patent dating to the 1670s. Réaumur conducted extensive research on malleable iron in 1720. He discovered that iron castings which were too hard to be worked could be softened by packing them into
iron ore Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in color from dark grey, bright yellow, or deep purple to rusty red. The iron is usually found in the f ...
or hammer slag and exposing them to high temperature for a number of days. Creating malleable iron began in the United States in 1826 when Seth Boyden started a foundry for the production of harness hardware and other small castings.


Castability, heat treating and post-casting operations

Like similar irons with the carbon formed into spherical or nodular shapes, malleable iron exhibits good
ductility Ductility refers to the ability of a material to sustain significant plastic Deformation (engineering), deformation before fracture. Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic def ...
. Incorrectly considered by some to be an "old" or "dead" material, malleable iron still has a legitimate place in the design engineer's toolbox. Malleable iron is a good choice for small castings or castings with thin cross sections (less than 0.25-inch, 6.35 mm). Other nodular irons produced with graphite in the spherical shape can be difficult to produce in these applications, due to the formation of carbides from the rapid cooling. Malleable iron also exhibits better fracture toughness properties in low temperature environments than other nodular irons, due to its lower silicon content. The ductile to brittle transition temperature is lower than many other ductile iron alloys. In order to properly form the spherical-shaped nodules of graphite (called temper graphite nodules or temper carbon nodules) in the annealing process, care must be taken to ensure that the iron casting will solidify with an entirely white iron cross section. Thicker sections of a
casting Casting is a manufacturing process in which a liquid material is usually poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or ...
will cool slowly, allowing some primary graphite to form. This graphite forms random flake-like structures and will not transform to carbide during heat treatment. When stress is applied to such a casting in application, the fracture strength will be lower than expected for white iron. Such iron is said to have a 'mottled' appearance. Some countermeasures can be applied to enhance the formation of the all-white structure, but malleable iron foundries often avoid producing heavy sections. After the casting and heat treatment processes, malleable iron can be shaped through cold working, such as stamping for straightening, bending or coining operations. This is possible due to malleable iron's desirable property of being less strain rate sensitive than other materials.


Applications

It is often used for small castings requiring good tensile strength and the ability to flex without breaking (ductility). Uses include electrical fittings, hand tools, pipe fittings, washers, brackets, fence fittings, power line hardware, farm equipment, mining hardware, and machine parts.


See also

*
Ductile iron Ductile iron, also known as ductile cast iron, nodular cast iron, spheroidal graphite iron, spheroidal graphite cast iron and SG iron, is a type of graphite-rich cast iron discovered in 1943 by Keith Millis. While most varieties of cast iron are ...
*
Wrought iron Wrought iron is an iron alloy with a very low carbon content (less than 0.05%) in contrast to that of cast iron (2.1% to 4.5%), or 0.25 for low carbon "mild" steel. Wrought iron is manufactured by heating and melting high carbon cast iron in an ...


References

{{DEFAULTSORT:Malleable Iron Cast iron Ferrous alloys