HOME

TheInfoList



OR:

Magnetofection is a
transfection Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: " transformation" is typically used to des ...
method that uses magnetic fields to concentrate particles containing vectors to target cells in the body. Magnetofection has been adapted to a variety of vectors, including
nucleic acids Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic a ...
, non-viral transfection systems, and
viruses A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are found in almo ...
. This method offers advantages such as high transfection efficiency and
biocompatibility Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoin ...
which are balanced with limitations.


Mechanism


Principle

The term magnetofection, currently trademarked by the company OZ Biosciences, combines the words magnetic and transfection. Magnetofection uses nucleic acids associated with
magnetic nanoparticles Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has func ...
. These molecular complexes are then concentrated and transported into cells using an applied
magnetic field A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
.


Synthesis

The
magnetic nanoparticles Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has func ...
are typically made from
iron oxide An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. Iron ...
, which is fully biodegradable, using methods such as coprecipitation or microemulsion. The nanoparticles are then combined with gene vectors (
DNA Deoxyribonucleic acid (; DNA) is a polymer composed of two polynucleotide chains that coil around each other to form a double helix. The polymer carries genetic instructions for the development, functioning, growth and reproduction of al ...
,
siRNA Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded non-coding RNA molecules, typically 20–24 base pairs in length, similar to microRNA (miRNA), and operating within the RN ...
, ODN,
virus A virus is a submicroscopic infectious agent that replicates only inside the living Cell (biology), cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Viruses are ...
, etc.). One method involves linking viral particles to magnetic particles using an
avidin Avidin is a tetrameric biotin-binding protein produced in the oviducts of birds, reptiles and amphibians and deposited in the whites of their eggs. Dimeric members of the avidin family are also found in some bacteria. In chicken egg white, a ...
-
biotin Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. ...
interaction. Viruses can also bind to the nanoparticles via hydrophobic interaction. Another synthesis method involves coating magnetic nanoparticles with cationic lipids or polymers via salt-induced aggregation. For example, nanoparticles may be conjugated with the polyethylenimine (PEI), a positively charged polymer used commonly as a transfection agent. The PEI solution must have a high pH during synthesis to encourage high gene expression. The positively charged nanoparticles can then associate with negatively charged nucleic acids via
electrostatic Electrostatics is a branch of physics that studies slow-moving or stationary electric charges. Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word (), mean ...
interaction.


Cellular uptake

Magnetic particles loaded with vectors are concentrated on the target cells by the influence of an external magnetic field. The cells then take up genetic material naturally via
endocytosis Endocytosis is a cellular process in which Chemical substance, substances are brought into the cell. The material to be internalized is surrounded by an area of cell membrane, which then buds off inside the cell to form a Vesicle (biology and chem ...
and
pinocytosis In cellular biology, pinocytosis, otherwise known as fluid endocytosis and bulk-phase pinocytosis, is a mode of endocytosis in which small molecules dissolved in extracellular fluid are brought into the cell through an invagination of the cell me ...
. Consequently, membrane architecture and structure stays intact, in contrast to other physical transfection methods such as
electroporation Electroporation, also known as electropermeabilization, is a microbiological and biotechnological technique in which an electric field is applied to cells to briefly increase the permeability of the cell membrane. The application of a high-vo ...
or
gene gun In genetic engineering, a gene gun or biolistic particle delivery system is a device used to deliver exogenous DNA (transgenes), RNA, or protein to cells. By coating particles of a heavy metal with a gene of interest and firing these micro-projec ...
s that damage the cell membrane. The nucleic acids are then released into the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
by different mechanisms depending upon the formulation used: # the proton sponge effect caused by cationic polymers coated on the nanoparticles that promote
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
osmotic swelling, disruption of the
endosome Endosomes are a collection of intracellular sorting organelles in eukaryotic cells. They are parts of the endocytic membrane transport pathway originating from the trans Golgi network. Molecules or ligands internalized from the plasma membra ...
membrane and intracellular release of DNA form, # the destabilization of endosome by cationic
lipids Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins Vitamin A, A, Vitamin D, D, Vitamin E, E and Vitamin K, K), monoglycerides, diglycerides, phospholipids, and others. The fu ...
coated on the particles that release the
nucleic acid Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a pentose, 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nuclei ...
into cells by flip-flop of cell negative lipids and charge neutralization and # the viral infection mechanism. Magnetofection works with cells that are not dividing or slowly dividing, meaning that the genetic materials can go to the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
without
cell division Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
.


Applications

Magnetofection has been tested on a broad range of
cell lines An immortalised cell line is a population of cells from a multicellular organism that would normally not proliferate indefinitely but, due to mutation, have evaded normal cellular senescence and instead can keep undergoing division. The cells ...
, hard-to-transfect and primary cells. Several optimized and efficient magnetic nanoparticle formulations have been specifically developed for several types of applications such as DNA, siRNA, and primary neuron transfection as well as viral applications. Magnetofection research is currently in the preclinical stage. This technique has primarily been tested in vivo using plasmid DNA in mouse, rat, and rabbit models for applications in the hippocampus, subcutaneous tumors, lungs, spinal cord, and muscle. Some applications include: * Delivery of GFP gene into primary neural stem cells, which are typically difficult to transfect, with 18% efficacy with a static magnetic field and 32% efficacy with an oscillating field. * Delivery of oligodesoxynucleotides (ODN) into human umbilical vein endothelial cells with 84% efficiency. * Delivery of siRNA to HeLa cells to knock down luciferase reporter gene. * Delivery of adenoviral vectors to primary human peripheral blood lymphocytes.


Advantages

Magnetofection attempts to unite the advantages of biochemical (cationic
lipid Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing ...
s or polymers) and physical (
electroporation Electroporation, also known as electropermeabilization, is a microbiological and biotechnological technique in which an electric field is applied to cells to briefly increase the permeability of the cell membrane. The application of a high-vo ...
,
gene gun In genetic engineering, a gene gun or biolistic particle delivery system is a device used to deliver exogenous DNA (transgenes), RNA, or protein to cells. By coating particles of a heavy metal with a gene of interest and firing these micro-projec ...
) transfection methods. It allows for local delivery with high transfection efficiency, faster incubation time, and biocompatibility.


Transfection efficiency

Coupling magnetic nanoparticles to gene vectors results in hundreds-fold increase of the uptake of these vectors on a time scale of minutes, thus leading to high transfection efficiency. Gene vector and magnetic nanoparticle complexes are transfected into cells after 10–15 minutes, which is faster than the 2–4 hours that other transfection methods require. After 24, 48 or 72 hours, most of the particles are localized in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
, in vacuoles (membranes surrounded structure into cells) and occasionally in the
cell nucleus The cell nucleus (; : nuclei) is a membrane-bound organelle found in eukaryote, eukaryotic cell (biology), cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have #Anucleated_cells, ...
.


Biocompatibility

Magnetic nanoparticles do not aggregate easily once the magnet is removed, and therefore are unlikely to block
capillaries A capillary is a small blood vessel, from 5 to 10 micrometres in diameter, and is part of the microcirculation system. Capillaries are microvessels and the smallest blood vessels in the body. They are composed of only the tunica intima (the in ...
or cause
thrombosis Thrombosis () is the formation of a Thrombus, blood clot inside a blood vessel, obstructing the flow of blood through the circulatory system. When a blood vessel (a vein or an artery) is injured, the body uses platelets (thrombocytes) and fib ...
. In addition, iron oxide is biodegradable, and the iron can be reused in hemoglobin or iron metabolism pathways.


Disadvantages


Particle variability

Magnetic nanoparticle synthesis can sometimes lead to a wide range of differently sized particles. The size of particles can influence their usefulness. Specifically, nanoparticles that are less than 10 nm or greater than 200 nm in size tend to be cleared from the body more quickly.


Localization in vivo

While magnets can be used to localize magnetic nanoparticles to desired cells, this mechanism may be difficult to maintain in practice. The nanoparticles can be concentrated in 2D space such as on a culture plate or at the surface of the body, but it can be more difficult to localize them in the 3D space of the body. Magnetofection does not work well for organs or blood vessels far from the surface of the body, since the magnetic field weakens as distance increases. In addition, the user must consider the frequency and timing of applying the magnetic field, as the particles will not necessarily stay in the desired location once the magnet is removed.


Cytotoxicity

While iron oxide used to make nanoparticles is biodegradable, the toxicity of magnetic nanoparticles is still under investigation. Some research has found no signs of damage to cells, while others claim that small (< 2 nm) nanoparticles can diffuse across cell membranes and disrupt organelles. In addition, very high concentrations of iron oxide can disrupt homeostasis and lead to
iron overload Iron overload is the abnormal and increased accumulation of total iron in the body, leading to organ damage. The primary mechanism of organ damage is oxidative stress, as elevated intracellular iron levels increase free radical formation via the ...
, which can damage or alter DNA, affect cellular responses, and kill cells. Lysosymes can also digest the nanoparticles and release free iron which can react with hydrogen peroxide to form free radicals, leading to cytotoxic, mutagenic, and carcinogenic effects.


References


Further reading

* {{refend


See also

* Magnet-assisted transfection Molecular biology Molecular genetics Laboratory techniques Biomagnetics