HOME

TheInfoList



OR:

In
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and mult ...
, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
with a
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allow ...
that is everywhere nondegenerate. This is a generalization of a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
in which the requirement of positive-definiteness is relaxed. Every
tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
of a pseudo-Riemannian manifold is a
pseudo-Euclidean vector space In mathematics and theoretical physics, a pseudo-Euclidean space is a finite- dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vector , giving q ...
. A special case used in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
is a four-dimensional Lorentzian manifold for modeling
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
, where tangent vectors can be classified as timelike, null, and spacelike.


Introduction


Manifolds

In
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and mult ...
, a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
is a space which is locally similar to a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
. In an ''n''-dimensional Euclidean space any point can be specified by ''n'' real numbers. These are called the
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
s of the point. An ''n''-dimensional differentiable manifold is a generalisation of ''n''-dimensional Euclidean space. In a manifold it may only be possible to define coordinates ''locally''. This is achieved by defining coordinate patches: subsets of the manifold which can be mapped into ''n''-dimensional Euclidean space. See ''
Manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
'', ''
Differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
'', '' Coordinate patch'' for more details.


Tangent spaces and metric tensors

Associated with each point p in an n-dimensional differentiable manifold M is a
tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
(denoted T_pM). This is an n-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
whose elements can be thought of as
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
es of curves passing through the point p. A
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allow ...
is a
non-degenerate In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent definit ...
, smooth, symmetric,
bilinear map In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. Definition Vector spaces Let V, W ...
that assigns a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
to pairs of tangent vectors at each tangent space of the manifold. Denoting the metric tensor by g we can express this as :g : T_pM \times T_pM \to \mathbb. The map is symmetric and bilinear so if X,Y,Z \in T_pM are tangent vectors at a point p to the manifold M then we have * \,g(X,Y) = g(Y,X) * \,g(aX + Y, Z) = a g(X,Z) + g(Y,Z) for any real number a\in\mathbb. That g is
non-degenerate In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent definit ...
means there is no non-zero X \in T_pM such that \,g(X,Y) = 0 for all Y \in T_pM.


Metric signatures

Given a metric tensor ''g'' on an ''n''-dimensional real manifold, the
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to ...
associated with the metric tensor applied to each vector of any orthogonal basis produces ''n'' real values. By
Sylvester's law of inertia Sylvester's law of inertia is a theorem in matrix algebra about certain properties of the coefficient matrix of a real quadratic form that remain invariant under a change of basis. Namely, if ''A'' is the symmetric matrix that defines the quadra ...
, the number of each positive, negative and zero values produced in this manner are invariants of the metric tensor, independent of the choice of orthogonal basis. The
signature A signature (; from la, signare, "to sign") is a Handwriting, handwritten (and often Stylization, stylized) depiction of someone's name, nickname, or even a simple "X" or other mark that a person writes on documents as a proof of identity and ...
of the metric tensor gives these numbers, shown in the same order. A non-degenerate metric tensor has and the signature may be denoted (''p'', ''q''), where .


Definition

A pseudo-Riemannian manifold (M,g) is a
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
M equipped with an everywhere non-degenerate, smooth, symmetric
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allow ...
g. Such a metric is called a pseudo-Riemannian metric. Applied to a vector field, the resulting scalar field value at any point of the manifold can be positive, negative or zero. The signature of a pseudo-Riemannian metric is , where both ''p'' and ''q'' are non-negative. The non-degeneracy condition together with continuity implies that ''p'' and ''q'' remain unchanged throughout the manifold (assuming it is connected).


Properties of pseudo-Riemannian manifolds

Just as
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
\mathbb^n can be thought of as the model
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
,
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
\mathbb^ with the flat
Minkowski metric In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
is the model Lorentzian manifold. Likewise, the model space for a pseudo-Riemannian manifold of signature (p, q) is \mathbb^ with the metric :g = dx_1^2 + \cdots + dx_p^2 - dx_^2 - \cdots - dx_^2 Some basic theorems of Riemannian geometry can be generalized to the pseudo-Riemannian case. In particular, the fundamental theorem of Riemannian geometry is true of pseudo-Riemannian manifolds as well. This allows one to speak of the
Levi-Civita connection In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves ...
on a pseudo-Riemannian manifold along with the associated curvature tensor. On the other hand, there are many theorems in Riemannian geometry which do not hold in the generalized case. For example, it is ''not'' true that every smooth manifold admits a pseudo-Riemannian metric of a given signature; there are certain topological obstructions. Furthermore, a
submanifold In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which ...
does not always inherit the structure of a pseudo-Riemannian manifold; for example, the metric tensor becomes zero on any
light-like In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
. The
Clifton–Pohl torus In geometry, the Clifton–Pohl torus is an example of a compact Lorentzian manifold that is not geodesically complete. While every compact Riemannian manifold is also geodesically complete (by the Hopf–Rinow theorem), this space shows that the sa ...
provides an example of a pseudo-Riemannian manifold that is compact but not complete, a combination of properties that the
Hopf–Rinow theorem Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem ...
disallows for Riemannian manifolds., p. 193.


Lorentzian manifold

A Lorentzian manifold is an important special case of a pseudo-Riemannian manifold in which the signature of the metric is (equivalently, ; see ''
Sign convention In physics, a sign convention is a choice of the physical significance of signs (plus or minus) for a set of quantities, in a case where the choice of sign is arbitrary. "Arbitrary" here means that the same physical system can be correctly describ ...
''). Such metrics are called Lorentzian metrics. They are named after the Dutch physicist
Hendrik Lorentz Hendrik Antoon Lorentz (; 18 July 1853 – 4 February 1928) was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the Lorent ...
.


Applications in physics

After Riemannian manifolds, Lorentzian manifolds form the most important subclass of pseudo-Riemannian manifolds. They are important in applications of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. A principal premise of general relativity is that
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
can be modeled as a 4-dimensional Lorentzian manifold of signature or, equivalently, . Unlike Riemannian manifolds with positive-definite metrics, an indefinite signature allows tangent vectors to be classified into ''timelike'', ''null'' or ''spacelike''. With a signature of or , the manifold is also locally (and possibly globally) time-orientable (see ''
Causal structure In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. Introduction In modern physics (especially general relativity) spacetime is represented by a Lorentzian ma ...
'').


See also

*
Causality conditions In the study of Lorentzian manifold spacetimes there exists a hierarchy of causality conditions which are important in proving mathematical theorems about the global structure of such manifolds. These conditions were collected during the late 197 ...
*
Globally hyperbolic manifold In mathematical physics, global hyperbolicity is a certain condition on the causal structure of a spacetime manifold (that is, a Lorentzian manifold). It's called hyperbolic because the fundamental condition that generates the Lorentzian manifo ...
*
Hyperbolic partial differential equation In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can be ...
* Orientable manifold *
Spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...


Notes


References

* * * * *.


External links

* {{Riemannian geometry Bernhard Riemann Differential geometry * Riemannian geometry Riemannian manifolds Smooth manifolds