HOME

TheInfoList



OR:

In a relativistic theory of physics, a Lorentz scalar is an expression, formed from items of the theory, which evaluates to a
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers *Scalar (physics), a physical quantity that can be described by a single element of a number field such a ...
, invariant under any
Lorentz transformation In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation i ...
. A Lorentz scalar may be generated from e.g., the scalar product of vectors, or from contracting tensors of the theory. While the components of vectors and tensors are in general altered under Lorentz transformations, Lorentz scalars remain unchanged. A Lorentz scalar is not always immediately seen to be an invariant scalar in the mathematical sense, but the resulting scalar value is invariant under any basis transformation applied to the vector space, on which the considered theory is based. A simple Lorentz scalar in Minkowski spacetime is the ''spacetime distance'' ("length" of their difference) of two fixed events in spacetime. While the "position"-4-vectors of the events change between different inertial frames, their spacetime distance remains invariant under the corresponding Lorentz transformation. Other examples of Lorentz scalars are the "length" of 4-velocities (see below), or the Ricci curvature in a point in spacetime from General relativity, which is a contraction of the Riemann curvature tensor there.


Simple scalars in special relativity


The length of a position vector

In special relativity the location of a particle in 4-dimensional spacetime is given by x^\mu = (ct, \mathbf) where \mathbf = \mathbf t is the position in 3-dimensional space of the particle, \mathbf is the velocity in 3-dimensional space and c is the speed of light. The "length" of the vector is a Lorentz scalar and is given by x_ x^ = \eta_ x^ x^ = (ct)^2 - \mathbf \cdot \mathbf \ \stackrel\ (c\tau)^2 where \tau is the proper time as measured by a clock in the rest frame of the particle and the Minkowski metric is given by \eta^ = \eta_ = \begin 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end. This is a time-like metric. Often the alternate signature of the Minkowski metric is used in which the signs of the ones are reversed. \eta^ = \eta_ = \begin -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end. This is a space-like metric. In the Minkowski metric the space-like interval s is defined as x_ x^ = \eta_ x^ x^ = \mathbf \cdot \mathbf - (ct)^2 \ \stackrel\ s^2. We use the space-like Minkowski metric in the rest of this article.


The length of a velocity vector

The velocity in spacetime is defined as v^ \ \stackrel\ = \left( c , \right) = \left( \gamma c, \gamma \right) = \gamma \left( c, \right) where \gamma \ \stackrel\ . The magnitude of the 4-velocity is a Lorentz scalar, v_\mu v^\mu = -c^2\,. Hence, c is a Lorentz scalar.


The inner product of acceleration and velocity

The 4-acceleration is given by a^ \ \stackrel\ . The 4-acceleration is always perpendicular to the 4-velocity 0 = \left( v_\mu v^\mu \right) = v^\mu = a_\mu v^\mu. Therefore, we can regard acceleration in spacetime as simply a rotation of the 4-velocity. The inner product of the acceleration and the velocity is a Lorentz scalar and is zero. This rotation is simply an expression of energy conservation: = \mathbf \cdot \mathbf where E is the energy of a particle and \mathbf is the 3-force on the particle.


Energy, rest mass, 3-momentum, and 3-speed from 4-momentum

The 4-momentum of a particle is p^\mu = m v^\mu = \left( \gamma m c, \gamma m \mathbf \right) = \left( \gamma m c, \mathbf \right) = \left( \frac E c , \mathbf \right) where m is the particle rest mass, \mathbf is the momentum in 3-space, and E = \gamma m c^2 is the energy of the particle.


Measurement of the energy of a particle

Consider a second particle with 4-velocity u and a 3-velocity \mathbf_2 . In the rest frame of the second particle the inner product of u with p is proportional to the energy of the first particle p_\mu u^\mu = - E_1 where the subscript 1 indicates the first particle. Since the relationship is true in the rest frame of the second particle, it is true in any reference frame. E_1 , the energy of the first particle in the frame of the second particle, is a Lorentz scalar. Therefore, E_1 = \gamma_1 \gamma_2 m_1 c^2 - \gamma_2 \mathbf_1 \cdot \mathbf_2 in any inertial reference frame, where E_1 is still the energy of the first particle in the frame of the second particle.


Measurement of the rest mass of the particle

In the rest frame of the particle the inner product of the momentum is p_\mu p^\mu = -(mc)^2 \,. Therefore, the rest mass () is a Lorentz scalar. The relationship remains true independent of the frame in which the inner product is calculated. In many cases the rest mass is written as m_0 to avoid confusion with the relativistic mass, which is \gamma m_0 .


Measurement of the 3-momentum of the particle

Note that \left( \frac \right)^2 + p_ p^ = - (mc)^2 = \left( \gamma_1^2 - 1 \right) (mc)^2 = \gamma_1^2 m^2 = \mathbf_1 \cdot \mathbf_1. The square of the magnitude of the 3-momentum of the particle as measured in the frame of the second particle is a Lorentz scalar.


Measurement of the 3-speed of the particle

The 3-speed, in the frame of the second particle, can be constructed from two Lorentz scalars v_1^2 = \mathbf_1 \cdot \mathbf_1 = \frac c^4.


More complicated scalars

Scalars may also be constructed from the tensors and vectors, from the contraction of tensors (such as F_F^), or combinations of contractions of tensors and vectors (such as g_x^x^).


References

* * {{Physics-footer Concepts in physics Minkowski spacetime Theory of relativity Hendrik Lorentz Scalars