HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points).


Properties of a point on a function

Perhaps the best-known example of the idea of locality lies in the concept of
local minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
(or
local maximum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate
neighborhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, ...
of points. This is to be contrasted with the idea of global minimum (or global maximum), which corresponds to the minimum (resp., maximum) of the function across its entire domain.


Properties of a single space

A
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
is sometimes said to exhibit a property locally, if the property is exhibited "near" each point in one of the following ways: # Each point has a
neighborhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, ...
exhibiting the property; # Each point has a neighborhood base of sets exhibiting the property. Here, note that condition (2) is for the most part stronger than condition (1), and that extra caution should be taken to distinguish between the two. For example, some variation in the definition of
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
can arise as a result of the different choices of these conditions.


Examples

*
Locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
topological spaces *
Locally connected In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Background Throughout the history of topology, connectedness ...
and
Locally path-connected In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Background Throughout the history of topology, connectedness ...
topological spaces * Locally Hausdorff, Locally regular, Locally normal etc... * Locally metrizable


Properties of a pair of spaces

Given some notion of equivalence (e.g.,
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isom ...
,
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two ...
,
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' ...
) between
topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called poin ...
s, two spaces are said to be locally equivalent if every point of the first space has a neighborhood which is equivalent to a neighborhood of the second space. For instance, the
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is cons ...
and the line are very different objects. One cannot stretch the circle to look like the line, nor compress the line to fit on the circle without gaps or overlaps. However, a small piece of the circle can be stretched and flattened out to look like a small piece of the line. For this reason, one may say that the circle and the line are locally equivalent. Similarly, the
sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the c ...
and the plane are locally equivalent. A small enough observer standing on the
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
of a sphere (e.g., a person and the Earth) would find it indistinguishable from a plane.


Properties of infinite groups

For an infinite group, a "small neighborhood" is taken to be a finitely generated
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
. An infinite group is said to be locally ''P'' if every finitely generated subgroup is ''P''. For instance, a group is locally finite if every finitely generated subgroup is finite, and a group is locally soluble if every finitely generated subgroup is
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
.


Properties of finite groups

For
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or ma ...
s, a "small neighborhood" is taken to be a subgroup defined in terms of a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
''p'', usually the local subgroups, the
normalizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', o ...
s of the nontrivial ''p''-subgroups. In which case, a property is said to be local if it can be detected from the local subgroups. Global and local properties formed a significant portion of the early work on the
classification of finite simple groups In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else i ...
, which was carried out during the 1960s.


Properties of commutative rings

{{main, local ring For commutative rings, ideas of
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
make it natural to take a "small neighborhood" of a ring to be the localization at a
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together wi ...
. In which case, a property is said to be local if it can be detected from the
local ring In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebrai ...
s. For instance, being a
flat module In algebra, a flat module over a ring ''R'' is an ''R''-module ''M'' such that taking the tensor product over ''R'' with ''M'' preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact se ...
over a commutative ring is a local property, but being a
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a fiel ...
is not. For more, see Localization of a module.


See also

* Local path connectedness


References

General topology Homeomorphisms