List of formulas in elementary geometry
   HOME

TheInfoList



OR:

This is a short list of some common mathematical shapes and figures and the formulas that describe them.


Two-dimensional shapes

:Sources:


Three-dimensional shapes

This is a list of volume formulas of basic shapes: *
Cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ...
\frac\pi r^2 h, where r is the base's radius and h is the cone's height; *
Cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
a^3, where a is the side's length; *
Cuboid In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six Face (geometry), faces; it has eight Vertex (geometry), vertices and twelve Edge (geometry), edges. A ''rectangular cuboid'' (sometimes also calle ...
abc, where a, b, and c are the sides' length; *
Cylinder A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite ...
\pi r^2 h, where r is the base's radius and h is the cylinder's height; *
Ellipsoid An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a Surface (mathemat ...
\frac\pi abc, where a, b, and c are the
semi-major and semi-minor axes In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the longe ...
' length; *
Sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
\frac\pi r^3 , where r is the radius; *
Parallelepiped In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. Three equiva ...
abc\sqrt, where a, b, and c are the sides' length,K = 1 + 2\cos(\alpha)\cos(\beta)\cos(\gamma) - \cos^2(\alpha) - \cos^2(\beta) - \cos^2(\gamma), and \alpha, \beta, and \gamma are angles between the two sides; *
Prism PRISM is a code name for a program under which the United States National Security Agency (NSA) collects internet communications from various U.S. internet companies. The program is also known by the SIGAD . PRISM collects stored internet ...
Bh, where B is the base's area and h is the prism's height; *
Pyramid A pyramid () is a structure whose visible surfaces are triangular in broad outline and converge toward the top, making the appearance roughly a pyramid in the geometric sense. The base of a pyramid can be of any polygon shape, such as trian ...
\fracBh, where B is the base's area and h is the pyramid's height; *
Tetrahedron In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
a^3, where a is the side's length.


Sphere

The basic quantities describing a sphere (meaning a
2-sphere A sphere (from Greek , ) is a surface analogous to the circle, a curve. In solid geometry, a sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ''center' ...
, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables *r is the radius, *C = 2 \pi r is the
circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
(the length of any one of its
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Discussion Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
s), *S is the
surface area The surface area (symbol ''A'') of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the d ...
, *V is the
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
. Surface area: \begin S &= 4 \pi r^2 \\ .3ex&= \frac C^2 \\ .3ex&= \sqrt \\ .3ex\end Volume: \begin V &= \frac \pi r^3 \\ .3ex&= \frac C^3 \\ .3ex&= \frac S^ \\ .3ex\end Radius: \begin r &= \frac C \\ .3ex&= \sqrt \\ .3ex&= \sqrt \\ .3ex\end
Circumference In geometry, the circumference () is the perimeter of a circle or ellipse. The circumference is the arc length of the circle, as if it were opened up and straightened out to a line segment. More generally, the perimeter is the curve length arou ...
: \begin C &= 2 \pi r \\ .3ex&= \sqrt \\ .3ex&= \sqrt \\ .3ex\end


See also

* * * * * * * *


References

{{DEFAULTSORT:Formulas in elementary geometry * Mathematics-related lists