HOME

TheInfoList



OR:

This list is a compilation of
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
s measuring the cosmic microwave background (CMB) radiation anisotropies and polarization since the first detection of the CMB by Penzias and Wilson in 1964. There have been a variety of
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
s to measure the CMB anisotropies and polarization since its first observation in 1964 by Penzias and Wilson. These include a mix of ground-, balloon- and space-based receivers. Some notable experiments in the list are COBE, which first detected the temperature anisotropies of the CMB, and showed that it had a black body spectrum; DASI, which first detected the polarization signal from the CMB; CBI, which made high-resolution observations and obtained the first E-mode polarization spectrum;
WMAP The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
; and the
Planck spacecraft ''Planck'' was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013, which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and small angu ...
, which has produced the highest resolution all-sky map to-date of both the temperature anisotropies and polarization signals. Current scientific goals for CMB observation include precise measurement of gravitational lensing, which can constrain the mass of the
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
; and measurement of B-mode polarization as possible evidence for cosmic inflation. The design of cosmic microwave background experiments is a very challenging task. The greatest problems are the receivers, the telescope optics and the atmosphere. Many improved microwave amplifier technologies have been designed for microwave background applications. Some technologies used are HEMT,
MMIC Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as ...
, SIS and
bolometer A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley. Principle of operation A bolometer ...
s. Experiments generally use elaborate cryogenic systems to keep the amplifiers cool. Often, experiments are interferometers which only measure the spatial fluctuations in signals on the sky, and are insensitive to the average 2.7 K background. Another problem is the 1/''f'' noise intrinsic to all detectors. Usually the experimental scan strategy is designed to minimize the effect of such noise. To minimize
side lobe In antenna engineering, sidelobes are the lobes (local maxima) of the far field radiation pattern of an antenna or other radiation source, that are not the ''main lobe''. The radiation pattern of most antennas shows a pattern of "''lobes'' ...
s, microwave optics usually utilize elaborate lenses and
feed horn A feed horn (or feedhorn) is a small horn antenna used to couple a waveguide to e.g. a parabolic dish antenna or offset dish antenna for reception or transmission of microwave. A typical application is the use for satellite television recep ...
s. Finally, in ground-based (and, to an extent, balloon-based) instruments, water and oxygen in the atmosphere emit and absorb microwave radiation. Even at frequencies where the atmospheric transmission is high, atmospheric emission contributes
photon noise Photon noise is the randomness in signal associated with photons arriving at a detector. For a simple black body emitting on an absorber, the noise-equivalent power is given by :\mathrm^2 = 2 h^2 \nu^2 \Delta\nu \left( \frac + n^2 \right) where ...
that limits the sensitivity of an experiment. CMB research therefore uses of air- and space-borne experiments, as well as dry, high altitude locations such as the Chilean Andes and the
South Pole The South Pole, also known as the Geographic South Pole, Terrestrial South Pole or 90th Parallel South, is one of the two points where Earth's axis of rotation intersects its surface. It is the southernmost point on Earth and lies antipod ...
.


Cosmic microwave background experiments

The list below consists of a partial list of past, current and planned CMB experiments. The name, start and end years of each experiment are given, followed by the basis of the experiment—whether space, balloon or ground based—and the location where appropriate. The frequency and amplifier technologies used are given, as is the main targets of the experiments.


References


Further reading

* NASA, 2015, "Hosted Data on LAMBDA: CMB Experiments," se

accessed 27 March 2015. {{DEFAULTSORT:List Of Cosmic Microwave Background Experiments Cosmic microwave background experiments,