List of axioms
   HOME

TheInfoList



OR:

This is a list of
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s as that term is understood in
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
. In
epistemology Epistemology is the branch of philosophy that examines the nature, origin, and limits of knowledge. Also called "the theory of knowledge", it explores different types of knowledge, such as propositional knowledge about facts, practical knowle ...
, the word ''axiom'' is understood differently; see
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
and
self-evidence In epistemology (theory of knowledge), a self-evident proposition is a proposition that is known to be true by understanding its meaning without proof, and/or by ordinary human reason. Some epistemologists deny that any proposition can be self ...
. Individual axioms are almost always part of a larger
axiomatic system In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes ...
.


ZF (the Zermelo–Fraenkel axioms without the axiom of choice)

''Together with the axiom of choice (see below), these are the'' de facto ''standard axioms for contemporary
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
or
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. They can be easily adapted to analogous theories, such as
mereology Mereology (; from Greek μέρος 'part' (root: μερε-, ''mere-'') and the suffix ''-logy'', 'study, discussion, science') is the philosophical study of part-whole relationships, also called ''parthood relationships''. As a branch of metaphys ...
.'' *
Axiom of extensionality The axiom of extensionality, also called the axiom of extent, is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. The axiom defines what a Set (mathematics), set is. Informally, the axiom means that the ...
*
Axiom of empty set In axiomatic set theory, the axiom of empty set, also called the axiom of null set and the axiom of existence, is a statement that asserts the existence of a set with no elements. It is an axiom of Kripke–Platek set theory and the variant of g ...
*
Axiom of pairing In axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of pairing is one of the axioms of Zermelo–Fraenkel set theory. It was introduced by as a special case of his axiom of elementary sets ...
*
Axiom of union An axiom, postulate, or assumption is a statement (logic), statement that is taken to be truth, true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that whi ...
*
Axiom of infinity In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing ...
*
Axiom schema of replacement In set theory, the axiom schema of replacement is a Axiom schema, schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image (mathematics), image of any Set (mathematics), set under any definable functional predicate, mappi ...
*
Axiom of power set In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. It guarantees for every set x the existence of a set \mathcal(x), the power set of x, consisting precisely of the subsets of x. By the axio ...
*
Axiom of regularity In mathematics, the axiom of regularity (also known as the axiom of foundation) is an axiom of Zermelo–Fraenkel set theory that states that every Empty set, non-empty Set (mathematics), set ''A'' contains an element that is Disjoint sets, disjoin ...
*
Axiom schema of specification In many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation (''Aussonderungsaxiom''), subset axiom, axiom of class construction, or axiom schema of restricted comprehension is ...
See also
Zermelo set theory Zermelo set theory (sometimes denoted by Z-), as set out in a seminal paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo–Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It be ...
.


Axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...

''With the Zermelo–Fraenkel axioms above, this makes up the system ZFC in which most mathematics is potentially formalisable.''


Equivalents of AC

* Hausdorff maximality theorem *
Well-ordering theorem In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set ''X'' is ''well-ordered'' by a strict total order if every non-empty subset of ''X'' has a least element under the order ...
*
Zorn's lemma Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least on ...


Stronger than AC

*
Axiom of global choice In mathematics, specifically in class theories, the axiom of global choice is a stronger variant of the axiom of choice that applies to proper classes of sets as well as sets of sets. Informally it states that one can simultaneously choose an ele ...


Weaker than AC

*
Axiom of countable choice The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain \mathbb ( ...
*
Axiom of dependent choice In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. T ...
*
Boolean prime ideal theorem In mathematics, the Boolean prime ideal theorem states that Ideal (order theory), ideals in a Boolean algebra (structure), Boolean algebra can be extended to Ideal (order theory)#Prime ideals , prime ideals. A variation of this statement for Filte ...
*
Axiom of uniformization In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if R is a subset of X\times Y, where X and Y are Polish spaces, then there is a subset f of R that is a partial function from X ...


Alternates incompatible with AC

* Axiom of real determinacy


Other axioms of

mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...

* Von Neumann–Bernays–Gödel axioms *
Continuum hypothesis In mathematics, specifically set theory, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states: Or equivalently: In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this ...
and its generalization * Freiling's axiom of symmetry *
Axiom of determinacy In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game o ...
*
Axiom of projective determinacy In mathematical logic, projective determinacy is the special case of the axiom of determinacy applying only to projective sets. The axiom of projective determinacy, abbreviated PD, states that for any two-player infinite game of perfect information ...
*
Martin's axiom In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consi ...
*
Axiom of constructibility The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as ''V'' = ''L''. The axiom, first investigated by Kurt Gödel, is inconsistent with the pr ...
*
Rank-into-rank In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength. (A set of rank < \lambda is one of the elements o ...
* Kripke–Platek axioms *
Diamond principle In mathematics, and particularly in axiomatic set theory, the diamond principle is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe () and that implies the continuum hypothesis. Jensen extracted th ...


Geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...

*
Parallel postulate In geometry, the parallel postulate is the fifth postulate in Euclid's ''Elements'' and a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: If a line segment intersects two straight lines forming two interior ...
*
Birkhoff's axioms In 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms. These postulates are all based on basic geometry that can be confirmed experimentally with a scale and prot ...
(4 axioms) *
Hilbert's axioms Hilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book ''Grundlagen der Geometrie'' (tr. ''The Foundations of Geometry'') as the foundation for a modern treatment of Euclidean geometry. Other well-known modern ax ...
(20 axioms) *
Tarski's axioms Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity (i.e. is formulable as an elementary theory). As such, it does not require an u ...
(10 axioms and 1 schema)


Other axioms

* Axiom of Archimedes (
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
) *
Axiom of countability In mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist. Important examples Important c ...
(
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
) * Dirac–von Neumann axioms * Fundamental axiom of analysis (
real analysis In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
) *
Gluing axiom In mathematics, the gluing axiom is introduced to define what a sheaf (mathematics), sheaf \mathcal F on a topological space X must satisfy, given that it is a presheaf, which is by definition a contravariant functor ::(X) \rightarrow C to a cate ...
(
sheaf theory In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the d ...
) * Haag–Kastler axioms (
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
) * Huzita's axioms (
origami ) is the Japanese art of paper folding. In modern usage, the word "origami" is often used as an inclusive term for all folding practices, regardless of their culture of origin. The goal is to transform a flat square sheet of paper into a ...
) *
Kuratowski closure axioms In topology and related branches of mathematics, the Kuratowski closure axioms are a set of axioms that can be used to define a topological structure on a Set (mathematics), set. They are equivalent to the more commonly used open set definition. The ...
(
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
) * Peano's axioms (
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
) *
Probability axioms The standard probability axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-worl ...
*
Separation axiom In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes ...
(
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
) * Wightman axioms (
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
) * Action axiom (
praxeology In philosophy, praxeology or praxiology (; ) is the theory of human Action (philosophy), action, based on the notion that humans engage in purposeful behavior, contrary to Reflex, reflexive behavior and other unintentional behavior. French socia ...
) {{Portal, Mathematics
Axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
*


See also

* Axiomatic quantum field theory *
Minimal axioms for Boolean algebra In mathematical logic, minimal axioms for Boolean algebra are assumptions which are equivalent to the axioms of Boolean algebra (or propositional calculus), chosen to be as short as possible. For example, an axiom with six NAND operations and thre ...