In
theoretical physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental p ...
, a local reference frame (local frame) refers to a
coordinate system
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the position of the points or other geometric elements on a manifold such as Euclidean space. The coordinates are ...
or
frame of reference
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
that is only expected to function over a small region or a restricted region of space or
spacetime
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
.
The term is most often used in the context of the application of local inertial frames to small regions of a
gravitational field
In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. A gravitational field is used to explain gravitational phenomena, such as ...
. Although gravitational
tidal forces
The tidal force or tide-generating force is the difference in gravitational attraction between different points in a gravitational field, causing bodies to be pulled unevenly and as a result are being stretched towards the attraction. It is the d ...
will cause the background geometry to become noticeably
non-Euclidean over larger regions, if we restrict ourselves to a sufficiently small region containing a cluster of objects falling together in an ''effectively'' uniform gravitational field, their physics can be described as the physics of that cluster in a space free from explicit background gravitational effects.
Equivalence principle
When constructing his
general theory of relativity,
Einstein made the following observation: a freely falling object in a gravitational field will not be able to detect the existence of the field by making local measurements ("a falling man feels no gravity"). Einstein was then able to complete his general theory by arguing that the physics of curved spacetime must reduce over small regions to the physics of simple inertial mechanics (in this case
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between Spacetime, space and time. In Albert Einstein's 1905 paper, Annus Mirabilis papers#Special relativity,
"On the Ele ...
) for small freefalling regions.
Einstein referred to this as "the happiest idea of my life".
Laboratory frame
In physics, the laboratory frame of reference, or lab frame for short, is a
frame of reference
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
centered on the
laboratory
A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools ...
in which the
experiment
An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs whe ...
(either real or thought experiment) is done. This is the reference frame in which the laboratory is at rest. Also, this is usually the frame of reference in which
measurement
Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events.
In other words, measurement is a process of determining how large or small a physical quantity is as compared to ...
s are made, since they are presumed (unless stated otherwise) to be made by laboratory instruments. An example of instruments in a lab frame, would be the
particle detector
In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify ionizing elementary particle, particles, such as t ...
s at the detection facility of a
particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental ...
.
See also
*
Breit frame
*
Center-of-mass frame
In physics, the center-of-momentum frame (COM frame) of a system, also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The ''center of momentum' ...
*
Frame bundle
In mathematics, a frame bundle is a principal fiber bundle F(E) associated with any vector bundle ''E''. The fiber of F(E) over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E_x''. The general linear group acts naturally on ...
*
Inertial frame of reference
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
*
Local coordinates
*
Local spacetime structure
In theoretical physics, a local reference frame (local frame) refers to a coordinate system or frame of reference that is only expected to function over a small region or a restricted region of space or spacetime.
The term is most often used in ...
*
Lorentz covariance
*
Minkowski space
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model.
The model helps show how a ...
*
Normal coordinates
In differential geometry, normal coordinates at a point ''p'' in a differentiable manifold equipped with a torsion tensor, symmetric affine connection are a local coordinate system in a neighborhood (mathematics), neighborhood of ''p'' obtained by ...
Frames of reference
{{Relativity-stub