List Of Linear Algebra Topics
   HOME

TheInfoList



OR:

This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices.


Linear equations

Linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
*
System of linear equations In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of th ...
*
Determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
** Minor **
Cauchy–Binet formula In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so th ...
*
Cramer's rule In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of ...
*
Gaussian elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can a ...
*
Gauss–Jordan elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can als ...
* Overcompleteness *
Strassen algorithm In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication. It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although t ...


Matrices

Matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
*
Matrix addition In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector, \vec\!, adding two matrices would have the geometric effect of applying each matrix transformation separately ...
*
Matrix multiplication In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the n ...
* Basis transformation matrix *
Characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The ...
*
Trace Trace may refer to: Arts and entertainment Music * ''Trace'' (Son Volt album), 1995 * ''Trace'' (Died Pretty album), 1993 * Trace (band), a Dutch progressive rock band * ''The Trace'' (album), by Nell Other uses in arts and entertainment * ...
*
Eigenvalue, eigenvector and eigenspace In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a c ...
**
Cayley–Hamilton theorem In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix over a commutative ring (such as the real or complex numbers or the integers) satisfies ...
** Spread of a matrix **
Jordan normal form \begin \lambda_1 1\hphantom\hphantom\\ \hphantom\lambda_1 1\hphantom\\ \hphantom\lambda_1\hphantom\\ \hphantom\lambda_2 1\hphantom\hphantom\\ \hphantom\hphantom\lambda_2\hphantom\\ \hphantom\lambda_3\hphantom\\ \hphantom\ddots\hphantom\\ ...
** Weyr canonical form *
Rank A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial. People Formal ranks * Academic rank * Corporate title * Diplomatic rank * Hierarchy ...
*
Matrix inversion In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an ...
,
invertible matrix In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
**
Pseudoinverse In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element ''x'' is an element ''y'' that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inv ...
* Adjugate *
Transpose In linear algebra, the transpose of a Matrix (mathematics), matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other ...
**
Dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
**
Symmetric matrix In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with ...
**
Orthogonal matrix In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q^\mathrm Q = Q Q^\mathrm = I, where is the transpose of and is the identi ...
**
Skew-symmetric matrix In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition In terms of the entries of the matrix, if a ...
**
Conjugate transpose In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \mathbf is an n \times m matrix obtained by transposing \mathbf and applying complex conjugation to each entry (the complex conjugate ...
***
Unitary matrix In linear algebra, an invertible complex square matrix is unitary if its matrix inverse equals its conjugate transpose , that is, if U^* U = UU^* = I, where is the identity matrix. In physics, especially in quantum mechanics, the conjugate ...
***
Hermitian matrix In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the ...
, Antihermitian matrix *
Positive-definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: * Positive-definite bilinear form * Positive-definite ...
,
positive-semidefinite matrix In mathematics, a symmetric matrix M with real entries is positive-definite if the real number \mathbf^\mathsf M \mathbf is positive for every nonzero real column vector \mathbf, where \mathbf^\mathsf is the row vector transpose of \mathbf. Mo ...
* Pfaffian *
Projection Projection or projections may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphics, and carto ...
*
Spectral theorem In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involvin ...
*
Perron–Frobenius theorem In matrix theory, the Perron–Frobenius theorem, proved by and , asserts that a real square matrix with positive entries has a unique eigenvalue of largest magnitude and that eigenvalue is real. The corresponding eigenvector can be chosen to ha ...
*
List of matrices A list is a set of discrete items of information collected and set forth in some format for utility, entertainment, or other purposes. A list may be memorialized in any number of ways, including existing only in the mind of the list-maker, but ...
**
Diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagon ...
,
main diagonal In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix A is the list of entries a_ where i = j. All off-diagonal elements are zero in a diagonal matrix ...
***
Diagonalizable matrix In linear algebra, a square matrix A is called diagonalizable or non-defective if it is matrix similarity, similar to a diagonal matrix. That is, if there exists an invertible matrix P and a diagonal matrix D such that . This is equivalent to ...
**
Triangular matrix In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are z ...
**
Tridiagonal matrix In linear algebra, a tridiagonal matrix is a band matrix that has nonzero elements only on the main diagonal, the subdiagonal/lower diagonal (the first diagonal below this), and the supradiagonal/upper diagonal (the first diagonal above the main ...
**
Block matrix In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix w ...
**
Sparse matrix In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which most of the elements are zero. There is no strict definition regarding the proportion of zero-value elements for a matrix to qualify as sparse ...
**
Hessenberg matrix In linear algebra, a Hessenberg matrix is a special kind of square matrix, one that is "almost" triangular. To be exact, an upper Hessenberg matrix has zero entries below the first subdiagonal, and a lower Hessenberg matrix has zero entries above ...
**
Hessian matrix In mathematics, the Hessian matrix, Hessian or (less commonly) Hesse matrix is a square matrix of second-order partial derivatives of a scalar-valued Function (mathematics), function, or scalar field. It describes the local curvature of a functio ...
**
Vandermonde matrix In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an (m + 1) \times (n + 1) matrix :V = V(x_0, x_1, \cdots, x_m) = \begin 1 & x_0 & x_0^2 & \dot ...
**
Stochastic matrix In mathematics, a stochastic matrix is a square matrix used to describe the transitions of a Markov chain. Each of its entries is a nonnegative real number representing a probability. It is also called a probability matrix, transition matrix, ''s ...
** Toeplitz matrix ***
Circulant matrix In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix. In numerica ...
**
Hankel matrix In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a rectangular matrix in which each ascending skew-diagonal from left to right is constant. For example, \qquad\begin a & b & c & d & e \\ b & c & d & e & ...
**
(0,1)-matrix A logical matrix, binary matrix, relation matrix, Boolean matrix, or (0, 1)-matrix is a matrix with entries from the Boolean domain Such a matrix can be used to represent a binary relation between a pair of finite sets. It is an important tool in ...


Matrix decompositions

Matrix decomposition *
Cholesky decomposition In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced ) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for eff ...
*
LU decomposition In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The produ ...
*
QR decomposition In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix ''A'' into a product ''A'' = ''QR'' of an orthonormal matrix ''Q'' and an upper triangular matrix ''R''. QR decom ...
*
Polar decomposition In mathematics, the polar decomposition of a square real or complex matrix A is a factorization of the form A = U P, where U is a unitary matrix, and P is a positive semi-definite Hermitian matrix (U is an orthogonal matrix, and P is a posit ...
* Reducing subspace *
Spectral theorem In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involvin ...
*
Singular value decomposition In linear algebra, the singular value decomposition (SVD) is a Matrix decomposition, factorization of a real number, real or complex number, complex matrix (mathematics), matrix into a rotation, followed by a rescaling followed by another rota ...
**
Higher-order singular value decomposition In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has application ...
*
Schur decomposition In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily similar to an upper tria ...
**
Schur complement The Schur complement is a key tool in the fields of linear algebra, the theory of matrices, numerical analysis, and statistics. It is defined for a block matrix. Suppose ''p'', ''q'' are nonnegative integers such that ''p + q > 0'', and suppose ...
**
Haynsworth inertia additivity formula In mathematics, the Haynsworth inertia additivity formula, discovered by Emilie Virginia Haynsworth (1916–1985), concerns the number of positive, negative, and zero eigenvalues of a Hermitian matrix and of block matrices into which it is partiti ...


Relations

*
Matrix equivalence In linear algebra, two rectangular ''m''-by-''n'' matrices ''A'' and ''B'' are called equivalent if :B = Q^ A P for some invertible ''n''-by-''n'' matrix ''P'' and some invertible ''m''-by-''m'' matrix ''Q''. Equivalent matrices represent the sam ...
*
Matrix congruence Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the ...
*
Matrix similarity In linear algebra, two ''n''-by-''n'' matrices and are called similar if there exists an invertible ''n''-by-''n'' matrix such that B = P^ A P . Similar matrices represent the same linear map under two possibly different bases, with being th ...
* Matrix consimilarity *
Row equivalence In linear algebra, two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Alternatively, two ''m'' × ''n'' matrices are row equivalent if and only if they have the same row ...


Computations

*
Elementary row operations In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group when is a field. Left multiplication ...
*
Householder transformation In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection (mathematics), reflection about a plane (mathematics), plane or hyperplane conta ...
*
Least squares The method of least squares is a mathematical optimization technique that aims to determine the best fit function by minimizing the sum of the squares of the differences between the observed values and the predicted values of the model. The me ...
,
linear least squares Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and ...
*
Gram–Schmidt process In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other. By technical definition, it is a metho ...
* Woodbury matrix identity


Vector spaces

Vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
*
Linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
*
Linear span In mathematics, the linear span (also called the linear hull or just span) of a set S of elements of a vector space V is the smallest linear subspace of V that contains S. It is the set of all finite linear combinations of the elements of , and ...
*
Linear independence In the theory of vector spaces, a set (mathematics), set of vector (mathematics), vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then th ...
*
Scalar multiplication In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector ...
* Basis **
Change of basis In mathematics, an ordered basis of a vector space of finite dimension allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of scalars called coordinates. If two different bases are conside ...
**
Hamel basis In mathematics, a set of elements of a vector space is called a basis (: bases) if every element of can be written in a unique way as a finite linear combination of elements of . The coefficients of this linear combination are referred to as ...
* Cyclic decomposition theorem *
Dimension theorem for vector spaces In mathematics, the dimension theorem for vector spaces states that all bases of a vector space have equally many elements. This number of elements may be finite or infinite (in the latter case, it is a cardinal number), and defines the dimension ...
**
Hamel dimension In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to d ...
*
Examples of vector spaces This page lists some examples of vector spaces. See vector space for the definitions of terms used on this page. See also: dimension (vector space), dimension, basis (linear algebra), basis. ''Notation''. Let ''F'' denote an arbitrary Field (ma ...
*
Linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
**
Shear mapping In plane geometry, a shear mapping is an affine transformation that displaces each point in a fixed direction by an amount proportional to its signed distance function, signed distance from a given straight line, line parallel (geometry), paral ...
or
Galilean transformation In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotati ...
**
Squeeze mapping In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation (mathematics), rotation or shear mapping. For a fixed p ...
or
Lorentz transformation In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant vel ...
*
Linear subspace In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a li ...
** Row and column spaces **
Column space In linear algebra, the column space (also called the range or image) of a matrix ''A'' is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matr ...
**
Row space In linear algebra, the column space (also called the range or image) of a matrix ''A'' is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matr ...
**
Cyclic subspace In mathematics, in linear algebra and functional analysis, a cyclic subspace is a certain special subspace of a vector space associated with a vector in the vector space and a linear transformation of the vector space. The cyclic subspace associat ...
**
Null space In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear ...
, nullity **
Rank–nullity theorem The rank–nullity theorem is a theorem in linear algebra, which asserts: * the number of columns of a matrix is the sum of the rank of and the nullity of ; and * the dimension of the domain of a linear transformation is the sum of the r ...
** Nullity theorem *
Dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V,'' together with the vector space structure of pointwise addition and scalar multiplication by cons ...
**
Linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
**
Linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear mapIn some texts the roles are reversed and vectors are defined as linear maps from covectors to scalars from a vector space to its field of ...
*
Category of vector spaces In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the rin ...


Structures

*
Topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
*
Normed vector space The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war ...
*
Inner product space In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
**
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
**
Orthogonality In mathematics, orthogonality is the generalization of the geometric notion of '' perpendicularity''. Although many authors use the two terms ''perpendicular'' and ''orthogonal'' interchangeably, the term ''perpendicular'' is more specifically ...
**
Orthogonal complement In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W^\perp of all vectors in V that are orthogonal to every vector in W. I ...
**
Orthogonal projection In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself (an endomorphism) such that P\circ P=P. That is, whenever P is applied twice to any vector, it gives the same result as if it we ...
**
Orthogonal group In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by ...
*
Pseudo-Euclidean space In mathematics and theoretical physics, a pseudo-Euclidean space of signature is a finite- dimensional real -space together with a non- degenerate quadratic form . Such a quadratic form can, given a suitable choice of basis , be applied to a vect ...
**
Null vector In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which . In the theory of real bilinear forms, definite quadratic forms an ...
**
Indefinite orthogonal group In mathematics, the indefinite orthogonal group, is the Lie group of all linear transformations of an ''n''-dimension (vector space), dimensional real number, real vector space that leave invariant a nondegenerate form, nondegenerate, symmetric bi ...
*
Orientation (geometry) In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a Line (geometry), line, plane (geometry), plane or rigid body – is part of the description of how it is placed in the Euclidean space, spa ...
**
Improper rotation In geometry, an improper rotation. (also called rotation-reflection, rotoreflection, rotary reflection,. or rotoinversion) is an isometry in Euclidean space that is a combination of a Rotation (geometry), rotation about an axis and a reflection ( ...
*
Symplectic structure Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the ...


Multilinear algebra

Multilinear algebra Multilinear algebra is the study of Function (mathematics), functions with multiple vector space, vector-valued Argument of a function, arguments, with the functions being Linear map, linear maps with respect to each argument. It involves concept ...
*
Tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
** Classical treatment of tensors **
Component-free treatment of tensors In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their properties can be derived from their definitions, as linear maps or ...
** Gamas's Theorem *
Outer product In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions ''n'' and ''m'', the ...
*
Tensor algebra In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra over a field, algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', ...
**
Exterior algebra In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector ...
**
Symmetric algebra In mathematics, the symmetric algebra (also denoted on a vector space over a field is a commutative algebra over that contains , and is, in some sense, minimal for this property. Here, "minimal" means that satisfies the following universal ...
**
Clifford algebra In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real number ...
**
Geometric algebra In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric pr ...


Topics related to affine spaces

Affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relat ...
*
Affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More general ...
*
Affine group In mathematics, the affine group or general affine group of any affine space is the group of all invertible affine transformations from the space into itself. In the case of a Euclidean space (where the associated field of scalars is the real nu ...
*
Affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is i ...
*
Affine coordinate system In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
*
Flat (geometry) In geometry, a flat is an affine subspace, i.e. a subset of an affine space that is itself an affine space. Particularly, in the case the parent space is Euclidean, a flat is a Euclidean subspace which inherits the notion of distance from it ...
*
Cartesian coordinate system In geometry, a Cartesian coordinate system (, ) in a plane (geometry), plane is a coordinate system that specifies each point (geometry), point uniquely by a pair of real numbers called ''coordinates'', which are the positive and negative number ...
*
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
*
Poincaré group The Poincaré group, named after Henri Poincaré (1905), was first defined by Hermann Minkowski (1908) as the isometry group of Minkowski spacetime. It is a ten-dimensional non-abelian Lie group that is of importance as a model in our unde ...
* Galilean group


Projective space

Projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
*
Projective transformation In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive. It is a bijection that maps lines to lines, and thus a collineation. In general, ...
*
Projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting (''p ...
*
Projective linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associa ...
*
Quadric In mathematics, a quadric or quadric surface is a generalization of conic sections (ellipses, parabolas, and hyperbolas). In three-dimensional space, quadrics include ellipsoids, paraboloids, and hyperboloids. More generally, a quadric hype ...
and
conic section A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, tho ...


See also

*
Glossary of linear algebra This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the general ...
*
Glossary of tensor theory This is a glossary of tensor theory. For expositions of tensor theory from different points of view, see: * Tensor * Tensor (intrinsic definition) * Application of tensor theory in engineering science For some history of the abstract theory see a ...
{{Linear algebra *
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...