List Of Group Theory Topics
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
and
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structur ...
, ''
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
'' studies the
algebraic structure In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplicatio ...
s known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings,
fields Fields may refer to: Music *Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song by ...
, and
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s, can all be seen as groups endowed with additional operations and
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra.
Linear algebraic group In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n ...
s and
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
s are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
s and the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
, may be modelled by
symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
s. Thus group theory and the closely related
representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
have many important applications in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
,
chemistry Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, and
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
. Group theory is also central to
public key cryptography Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic al ...
.


Structures and operations

* Central extension *
Direct product of groups In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is o ...
*
Direct sum of groups In mathematics, a group ''G'' is called the direct sumHomology. Saunders MacLane. Springer, Berlin; Academic Press, New York, 1963.László Fuchs. Infinite Abelian Groups of two normal subgroups with trivial intersection if it is generated ...
*
Extension problem In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence :1\to N\;\ove ...
*
Free abelian group In mathematics, a free abelian group is an abelian group with a Free module, basis. Being an abelian group means that it is a Set (mathematics), set with an addition operation (mathematics), operation that is associative, commutative, and inverti ...
*
Free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''− ...
*
Free product In mathematics, specifically group theory, the free product is an operation that takes two groups ''G'' and ''H'' and constructs a new The result contains both ''G'' and ''H'' as subgroups, is generated by the elements of these subgroups, an ...
*
Generating set of a group In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group (mathematics), group can be expressed as a combination (under the group operation) of finitely many elements of the subset and thei ...
*
Group cohomology In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology ...
*
Group extension In mathematics, a group extension is a general means of describing a group in terms of a particular normal subgroup and quotient group. If Q and N are two groups, then G is an extension of Q by N if there is a short exact sequence :1\to N\;\ove ...
*
Presentation of a group In mathematics, a presentation is one method of specifying a group. A presentation of a group ''G'' comprises a set ''S'' of generators—so that every element of the group can be written as a product of powers of some of these generators—and ...
*
Product of group subsets In mathematics, one can define a product of group subsets in a natural way. If ''S'' and ''T'' are subsets of a group (mathematics), group ''G'', then their product is the subset of ''G'' defined by :ST = \. The subsets ''S'' and ''T'' need not be s ...
*
Schur multiplier In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \ope ...
*
Semidirect product In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product: * an ''inner'' sem ...
*
Sylow theorems In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed ...
**
Hall subgroup In mathematics, specifically group theory, a Hall subgroup of a finite group ''G'' is a subgroup whose order is coprime to its index. They were introduced by the group theorist . Definitions A Hall divisor (also called a unitary divisor) of a ...
*
Wreath product In group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used ...


Basic properties of groups

*
Butterfly lemma In mathematics, the butterfly lemma or Zassenhaus lemma, named after Hans Zassenhaus, is a technical result on the lattice of subgroups of a group (mathematics), group or the lattice of submodules of a module (mathematics), module, or more genera ...
*
Center of a group In abstract algebra, the center of a group is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, Z(G)\triangl ...
*
Centralizer and normalizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of ele ...
*
Characteristic subgroup In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphis ...
*
Commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
*
Composition series In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many na ...
*
Conjugacy class In mathematics, especially group theory, two elements a and b of a group are conjugate if there is an element g in the group such that b = gag^. This is an equivalence relation whose equivalence classes are called conjugacy classes. In other ...
*
Conjugate closure In group theory, the normal closure of a subset S of a group G is the smallest normal subgroup of G containing S. Properties and description Formally, if G is a group and S is a subset of G, the normal closure \operatorname_G(S) of S is the ...
* Conjugation of isometries in Euclidean space *
Core (group) In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group (mathematics), group. The two most common types are the normal core of a subgroup and the ''p''-core of a group. The normal core Definition For ...
*
Coset In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
* Derived group *
Euler's theorem In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if and are coprime positive integers, then a^ is congruent to 1 modulo , where \varphi denotes Euler's totient function; that ...
*
Fitting subgroup In mathematics, especially in the area of algebra known as group theory, the Fitting subgroup ''F'' of a finite group ''G'', named after Hans Fitting, is the unique largest normal nilpotent subgroup of ''G''. Intuitively, it represents the smalle ...
** Generalized Fitting subgroup *
Hamiltonian group In group theory, a Dedekind group is a group ''G'' such that every subgroup of ''G'' is normal. All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group. The most familiar (and smallest) example of a Hami ...
*
Identity element In mathematics, an identity element or neutral element of a binary operation is an element that leaves unchanged every element when the operation is applied. For example, 0 is an identity element of the addition of real numbers. This concept is use ...
* Lagrange's theorem *
Multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
*
Normal subgroup In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group ...
*
Perfect group In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients. Examples The smallest (non-trivial) perfect group ...
*
p-core In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the ''p''-core of a group. The normal core Definition For a group ''G'', the ...
*
Schreier refinement theorem In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups tha ...
*
Subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
*
Transversal (combinatorics) In mathematics, particularly in combinatorics, given a family of sets, here called a collection ''C'', a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the co ...
*
Torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group ...
*
Zassenhaus lemma In mathematics, the butterfly lemma or Zassenhaus lemma, named after Hans Zassenhaus, is a technical result on the lattice of subgroups of a group (mathematics), group or the lattice of submodules of a module (mathematics), module, or more genera ...


Group homomorphisms

*
Automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphism ...
*
Automorphism group In mathematics, the automorphism group of an object ''X'' is the group consisting of automorphisms of ''X'' under composition of morphisms. For example, if ''X'' is a finite-dimensional vector space, then the automorphism group of ''X'' is the g ...
*
Factor group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For exam ...
*
Fundamental theorem on homomorphisms In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the Kernel (alg ...
*
Group homomorphism In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) whe ...
*
Group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the ...
*
Homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
*
Isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for ...
*
Inner automorphism In abstract algebra, an inner automorphism is an automorphism of a group, ring, or algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within thos ...
* Order automorphism *
Outer automorphism group In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has ...
*
Quotient group A quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored out"). For ex ...


Basic types of groups

*
Examples of groups In mathematics, a group is a set with an operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is associative, it has an identity element, and ev ...
*
Abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
*
Cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
**
Rank of an abelian group In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group ''A'' is the cardinality of a maximal linearly independent subset. The rank of ''A'' determines the size of the largest free abelian group contained in ''A''. If '' ...
*
Dicyclic group In group theory, a dicyclic group (notation Dic''n'' or Q4''n'', Coxeter&Moser: Generators and Relations for discrete groups: : Rl = Sm = Tn = RST) is a particular kind of non-abelian group of order 4''n'' (''n'' > 1). It is an extension of t ...
*
Dihedral group In mathematics, a dihedral group is the group (mathematics), group of symmetry, symmetries of a regular polygon, which includes rotational symmetry, rotations and reflection symmetry, reflections. Dihedral groups are among the simplest example ...
*
Divisible group In mathematics, specifically in the field of group theory, a divisible group is an abelian group in which every element can, in some sense, be divided by positive integers, or more accurately, every element is an ''n''th multiple for each positiv ...
* Finitely generated abelian group *
Group representation In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used ...
*
Klein four-group In mathematics, the Klein four-group is an abelian group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identi ...
*
List of small groups The following list in mathematics contains the finite groups of small order of a group, order up to group isomorphism. Counts For ''n'' = 1, 2, … the number of nonisomorphic groups of order ''n'' is : 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, ...
*
Locally cyclic group In mathematics, a locally cyclic group is a group (''G'', *) in which every finitely generated subgroup is cyclic. Some facts * Every cyclic group is locally cyclic, and every locally cyclic group is abelian. * Every finitely-generated locally ...
*
Nilpotent group In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, it has a central series of finite length or its lower central series terminates with . I ...
*
Non-abelian group In mathematics, and specifically in group theory, a non-abelian group, sometimes called a non-commutative group, is a group (''G'', ∗) in which there exists at least one pair of elements ''a'' and ''b'' of ''G'', such that ''a'' âˆ—  ...
*
Solvable group In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminat ...
*
P-group In mathematics, specifically group theory, given a prime number ''p'', a ''p''-group is a group in which the order of every element is a power of ''p''. That is, for each element ''g'' of a ''p''-group ''G'', there exists a nonnegative integ ...
*
Pro-finite group In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...


Simple groups and their classification

*
Classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
*
Alternating group In mathematics, an alternating group is the Group (mathematics), group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted ...
*
Borel subgroup In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgr ...
*
Chevalley group In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phra ...
*
Conway group In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by . The largest of the Conway groups, Co0, is the group of auto ...
* Feit–Thompson theorem *
Fischer group In the area of modern algebra known as group theory, the Fischer groups are the three sporadic simple groups Fi22, Fi23 and Fi24 introduced by . 3-transposition groups The Fischer groups are named after Bernd Fischer who discovered them ...
*
General linear group In mathematics, the general linear group of degree n is the set of n\times n invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again inve ...
*
Group of Lie type In mathematics, specifically in group theory, the phrase ''group of Lie type'' usually refers to finite groups that are closely related to the group of rational points of a Reductive group, reductive linear algebraic group with values in a finite ...
*
Group scheme In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups hav ...
* HN group *
Janko group In the area of modern algebra known as group theory, the Janko groups are the four sporadic simple groups '' J1'', '' J2'', '' J3'' and '' J4'' introduced by Zvonimir Janko. Unlike the Mathieu groups, Conway groups, or Fischer groups, the ...
*
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
**
Simple Lie group In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symm ...
*
Linear algebraic group In mathematics, a linear algebraic group is a subgroup of the group of invertible n\times n matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation M^TM = I_n ...
*
List of finite simple groups In mathematics, the classification of finite simple groups states that every finite simple group is cyclic, or alternating, or in one of 16 families of groups of Lie type, or one of 26 sporadic groups. The list below gives all finite simple g ...
*
Mathieu group In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objec ...
*
Monster group In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group; it has order :    : = 2463205976112133171923293 ...
** Baby Monster group ** Bimonster * Projective group *
Reductive group In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation that has a finite kernel and is a ...
*
Simple group SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The d ...
**
Quasisimple group In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension ''E'' of a simple group ''S''. In other words, there is a short exact sequence :1 \to Z(E) \to E \to S \to 1 such that E = , E ...
*
Special linear group In mathematics, the special linear group \operatorname(n,R) of degree n over a commutative ring R is the set of n\times n Matrix (mathematics), matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix ...
*
Symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
* Thompson group (finite) * Tits group *
Weyl group In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections t ...


Permutation and symmetry groups

*
Arithmetic group In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example \mathrm_2(\Z). They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theor ...
*
Braid group In mathematics, the braid group on strands (denoted B_n), also known as the Artin braid group, is the group whose elements are equivalence classes of Braid theory, -braids (e.g. under ambient isotopy), and whose group operation is composition of ...
*
Burnside's lemma Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, or the orbit-counting theorem, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. It ...
*
Cayley's theorem In the mathematical discipline of group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group is isomorphic to a subgroup of a symmetric group. More specifically, is isomorphic to a subgroup of the symmetric gro ...
*
Coxeter group In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections (or kaleidoscopic mirrors). Indeed, the finite Coxeter groups are precisely the finite Euclidean ref ...
*
Crystallographic group In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
*
Crystallographic point group In crystallography, a crystallographic point group is a three-dimensional point group whose symmetry operations are compatible with a three-dimensional crystallographic lattice. According to the crystallographic restriction it may only contain o ...
, Schoenflies notation *
Discrete group In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and ...
*
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformati ...
*
Even and odd permutations In mathematics, when ''X'' is a finite set with at least two elements, the permutations of ''X'' (i.e. the bijective functions from ''X'' to ''X'') fall into two classes of equal size: the even permutations and the odd permutations. If any tota ...
* Frieze group *
Frobenius group In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius. Structure Suppos ...
* Fuchsian group *
Geometric group theory Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these group ...
*
Group action In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under ...
*
Homogeneous space In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group. Homogeneous spaces occur in the theories of Lie groups, algebraic groups and ...
* Hyperbolic group *
Isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element ...
*
Orbit (group theory) In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under f ...
*
Permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
*
Permutation group In mathematics, a permutation group is a group ''G'' whose elements are permutations of a given set ''M'' and whose group operation is the composition of permutations in ''G'' (which are thought of as bijective functions from the set ''M'' to ...
*
Rubik's Cube group The Rubik's Cube group (G, \cdot ) represents the mathematical structure of the Rubik's Cube mechanical puzzle. Each element of the set G corresponds to a cube move, which is the effect of any sequence of rotations of the cube's faces. With this ...
*
Space group In mathematics, physics and chemistry, a space group is the symmetry group of a repeating pattern in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of the pattern that ...
*
Stabilizer subgroup In mathematics, a group action of a group G on a set S is a group homomorphism from G to some group (under function composition) of functions from S to itself. It is said that G acts on S. Many sets of transformations form a group under func ...
*
Steiner system 250px, thumbnail, The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner ...
* Strong generating set *
Symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
*
Symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric grou ...
*
Symmetry group In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the amb ...
*
Wallpaper group A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two-dimensional repetitive pattern, based on the symmetry, symmetries in the pattern. Such patterns occur frequently in architecture a ...


Concepts groups share with other mathematics

*
Associativity In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replaceme ...
*
Bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
*
Bilinear operator In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined fo ...
*
Binary operation In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, a binary operation ...
*
Commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
*
Congruence relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the ...
*
Equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
*
Equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
*
Lattice (group) In geometry and group theory, a lattice in the real coordinate space \mathbb^n is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice po ...
*
Lattice (discrete subgroup) In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R''n'', this amounts t ...
*
Multiplication table In mathematics, a multiplication table (sometimes, less formally, a times table) is a mathematical table used to define a multiplication binary operation, operation for an algebraic system. The decimal multiplication table was traditionally tau ...
*
Prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
*
Up to Two Mathematical object, mathematical objects and are called "equal up to an equivalence relation " * if and are related by , that is, * if holds, that is, * if the equivalence classes of and with respect to are equal. This figure of speech ...


Mathematical objects making use of a group operation

*
Abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group ...
*
Algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Man ...
*
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then ...
*
Category of groups In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories The ...
* Dimensional analysis *
Elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the ...
*
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
*
Gell-Mann matrices Murray Gell-Mann (; September 15, 1929 â€“ May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the fundame ...
*
Group object In category theory, a branch of mathematics, group objects are certain generalizations of group (mathematics), groups that are built on more complicated structures than Set (mathematics), sets. A typical example of a group object is a topological gr ...
*
Hilbert space In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The ...
*
Integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
*
Lie group In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Eucli ...
*
Matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
*
Modular arithmetic In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
*
Number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
*
Pauli matrices In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () ...
*
Real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
*
Quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quater ...
**
Quaternion group In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a nonabelian group, non-abelian group (mathematics), group of Group order, order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. ...
*
Tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...


Mathematical fields and topics making important use of group theory

*
Algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
*
Algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
*
Discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
*
Fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
*
Geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
* Homology * Minkowski's theorem *
Topological group In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures ...


Algebraic structures related to groups

* Field *
Finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), s ...
*
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field (mathematics), field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems ...
*
Grothendieck group In mathematics, the Grothendieck group, or group of differences, of a commutative monoid is a certain abelian group. This abelian group is constructed from in the most universal way, in the sense that any abelian group containing a group homomorp ...
*
Group ring In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the gi ...
*
Group with operators In abstract algebra, a branch of mathematics, a group with operators or Ω-group is an algebraic structure that can be viewed as a group together with a set Ω that operates on the elements of the group in a special way. Groups with operators were ...
* Heap *
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
*
Magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
* Module *
Monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
*
Monoid ring In abstract algebra, a monoid ring is a ring constructed from a ring and a monoid, just as a group ring is constructed from a ring and a group. Definition Let ''R'' be a ring and let ''G'' be a monoid. The monoid ring or monoid algebra of ''G'' o ...
* Quandle *
Quasigroup In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that " division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element pro ...
* Quantum group *
Ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
*
Semigroup In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily th ...
*
Vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...


Group representations

*
Affine representation In mathematics, an affine representation of a topological Lie group ''G'' on an affine space ''A'' is a continuous ( smooth) group homomorphism from ''G'' to the automorphism group of ''A'', the affine group Aff(''A''). Similarly, an affine re ...
*
Character theory In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information a ...
* Great orthogonality theorem *
Maschke's theorem In mathematics, Maschke's theorem, named after Heinrich Maschke, is a theorem in group representation theory that concerns the decomposition of representations of a finite group into irreducible pieces. Maschke's theorem allows one to make gener ...
*
Monstrous moonshine In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group ''M'' and modular functions, in particular the ''j'' function. The initial numerical observation was made by John McKay in 1978, ...
*
Projective representation In the field of representation theory in mathematics, a projective representation of a group ''G'' on a vector space ''V'' over a field ''F'' is a group homomorphism from ''G'' to the projective linear group \mathrm(V) = \mathrm(V) / F^*, where G ...
*
Representation theory Representation theory is a branch of mathematics that studies abstract algebra, abstract algebraic structures by ''representing'' their element (set theory), elements as linear transformations of vector spaces, and studies Module (mathematics), ...
*
Schur's lemma In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if ''M'' and ''N'' are two finite-dimensional irreducible representations of a gro ...


Computational group theory

* Coset enumeration * Schreier's subgroup lemma *
Schreier–Sims algorithm The Schreier–Sims algorithm is an algorithm in computational group theory, named after the mathematicians Otto Schreier and Charles Sims. This algorithm can find the order of a finite permutation group, determine whether a given permutati ...
* Todd–Coxeter algorithm


Applications

*
Computer algebra system A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The de ...
*
Cryptography Cryptography, or cryptology (from "hidden, secret"; and ''graphein'', "to write", or ''-logy, -logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of Adversary (cryptography), ...
**
Discrete logarithm In mathematics, for given real numbers a and b, the logarithm \log_b(a) is a number x such that b^x=a. Analogously, in any group G, powers b^k can be defined for all integers k, and the discrete logarithm \log_b(a) is an integer k such that b^k=a ...
**
Triple DES In cryptography, Triple DES (3DES or TDES), officially the Triple Data Encryption Algorithm (TDEA or Triple DEA), is a symmetric-key block cipher, which applies the DES cipher algorithm three times to each data block. The 56-bit key of the Dat ...
** Caesar cipher * Exponentiating by squaring *
Knapsack problem The knapsack problem is the following problem in combinatorial optimization: :''Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given lim ...
*
Shor's algorithm Shor's algorithm is a quantum algorithm for finding the prime factors of an integer. It was developed in 1994 by the American mathematician Peter Shor. It is one of the few known quantum algorithms with compelling potential applications and strong ...
*
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
*
Symmetry in physics The symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be ''continuous'' (such ...


Famous problems

*
Burnside's problem The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory, and was inf ...
*
Classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
* Herzog–Schönheim conjecture *
Subset sum problem The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S of integers and a target-sum T, and the question is to decide whether any subset of the integers sum to precisely T''.'' ...
*
Whitehead problem In group theory, a branch of abstract algebra, the Whitehead problem is the following question: Saharon Shelah proved that Whitehead's problem is independent of ZFC, the standard axioms of set theory. Refinement Assume that ''A'' is an a ...
*
Word problem for groups A word is a basic element of language that carries meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguists on its ...


Other topics

* Amenable group * Capable group *
Commensurability (group theory) In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer. Abstract commensurability Two g ...
*
Compact group In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural gen ...
* Compactly generated group * Complete group *
Complex reflection group In mathematics, a complex reflection group is a Group (mathematics), finite group acting on a finite-dimensional vector space, finite-dimensional complex numbers, complex vector space that is generated by complex reflections: non-trivial elements t ...
* Congruence subgroup *
Continuous symmetry In mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some Symmetry in mathematics, symmetries as Motion (physics), motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant u ...
*
Frattini subgroup In mathematics, particularly in group theory, the Frattini subgroup \Phi(G) of a group is the intersection of all maximal subgroups of . For the case that has no maximal subgroups, for example the trivial group or a Prüfer group, it is def ...
* Growth rate *
Heisenberg group In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form : \begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b' ...
, discrete Heisenberg group *
Molecular symmetry In chemistry, molecular symmetry describes the symmetry present in molecules and the classification of these molecules according to their symmetry. Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explai ...
* Nielsen transformation * Reflection group * Tarski monster group * Thompson groups * Tietze transformation * Transfer (group theory)


Group theorists

* N. Abel * M. Aschbacher * R. Baer * R. Brauer * W. Burnside * R. Carter * A. Cauchy * A. Cayley * J.H. Conway * R. Dedekind * L.E. Dickson * M. Dunwoody * W. Feit * B. Fischer * H. Fitting * G. Frattini * G. Frobenius * E. Galois * G. Glauberman * D. Gorenstein * R.L. Griess * M. Hall, Jr. * P. Hall * G. Higman * D. Hilbert * O. Hölder * B. Huppert * K. Iwasawa * Z. Janko * C. Jordan * F. Klein * A. Kurosh * J.L. Lagrange * C. Leedham-Green * F.W. Levi *
Sophus Lie Marius Sophus Lie ( ; ; 17 December 1842 – 18 February 1899) was a Norwegian mathematician. He largely created the theory of continuous symmetry and applied it to the study of geometry and differential equations. He also made substantial cont ...
* W. Magnus * E. Mathieu * G.A. Miller * B.H. Neumann * H. Neumann * J. Nielson *
Emmy Noether Amalie Emmy Noether (23 March 1882 – 14 April 1935) was a German mathematician who made many important contributions to abstract algebra. She also proved Noether's theorem, Noether's first and Noether's second theorem, second theorems, which ...
* Ø. Ore * O. Schreier * I. Schur * R. Steinberg * M. Suzuki * L. Sylow * J. Thompson * J. Tits * Helmut Wielandt * H. Zassenhaus * M. Zorn


See also

*
List of abstract algebra topics Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish t ...
*
List of category theory topics The following outline is provided as an overview of and guide to category theory, the area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as collections of ''objec ...
* List of Lie group topics {{DEFAULTSORT:Group theory * Mathematics-related lists Outlines of mathematics and logic Outlines