HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the
number line A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin point representing the number zero and evenly spaced marks in either dire ...
by their size. The main types of inequality are less than and greater than (denoted by and , respectively the less-than and greater-than signs).


Notation

There are several different notations used to represent different kinds of inequalities: * The notation ''a'' < ''b'' means that ''a'' is less than ''b''. * The notation ''a'' > ''b'' means that ''a'' is greater than ''b''. In either case, ''a'' is not equal to ''b''. These relations are known as strict inequalities, meaning that ''a'' is strictly less than or strictly greater than ''b''. Equality is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: * The notation ''a'' ≤ ''b'' or ''a'' ⩽ ''b'' or ''a'' ≦ ''b'' means that ''a'' is less than or equal to ''b'' (or, equivalently, at most ''b'', or not greater than ''b''). * The notation ''a'' ≥ ''b'' or ''a'' ⩾ ''b'' or ''a'' ≧ ''b'' means that ''a'' is greater than or equal to ''b'' (or, equivalently, at least ''b'', or not less than ''b''). In the 17th and 18th centuries, personal notations or typewriting signs were used to signal inequalities. For example, In 1670,
John Wallis John Wallis (; ; ) was an English clergyman and mathematician, who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 Wallis served as chief cryptographer for Parliament and, later, the royal court. ...
used a single horizontal bar ''above'' rather than below the < and >. Later in 1734, ≦ and ≧, known as "less than (greater-than) over equal to" or "less than (greater than) or equal to with double horizontal bars", first appeared in Pierre Bouguer's work . After that, mathematicians simplified Bouguer's symbol to "less than (greater than) or equal to with one horizontal bar" (≤), or "less than (greater than) or slanted equal to" (⩽). The relation not greater than can also be represented by a \ngtr b, the symbol for "greater than" bisected by a slash, "not". The same is true for not less than, a \nless b. The notation ''a'' ≠ ''b'' means that ''a'' is not equal to ''b''; this '' inequation'' sometimes is considered a form of strict inequality. It does not say that one is greater than the other; it does not even require ''a'' and ''b'' to be member of an ordered set. In engineering sciences, less formal use of the notation is to state that one quantity is "much greater" than another, normally by several orders of magnitude. * The notation ''a'' ≪ ''b'' means that ''a'' is much less than ''b''. * The notation ''a'' ≫ ''b'' means that ''a'' is much greater than ''b''. This implies that the lesser value can be neglected with little effect on the accuracy of an approximation (such as the case of ultrarelativistic limit in physics). In all of the cases above, any two symbols mirroring each other are symmetrical; ''a'' < ''b'' and ''b'' > ''a'' are equivalent, etc.


Properties on the number line

Inequalities are governed by the following
properties Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an ...
. All of these properties also hold if all of the non-strict inequalities (≤ and ≥) are replaced by their corresponding strict inequalities (< and >) and — in the case of applying a function — monotonic functions are limited to ''strictly''
monotonic function In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of or ...
s.


Converse

The relations ≤ and ≥ are each other's converse, meaning that for any
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s ''a'' and ''b'':


Transitivity

The transitive property of inequality states that for any
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s ''a'', ''b'', ''c'': If ''either'' of the premises is a strict inequality, then the conclusion is a strict inequality:


Addition and subtraction

A common constant ''c'' may be added to or subtracted from both sides of an inequality. So, for any
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s ''a'', ''b'', ''c'': In other words, the inequality relation is preserved under addition (or subtraction) and the real numbers are an ordered group under addition.


Multiplication and division

The properties that deal with
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
and division state that for any real numbers, ''a'', ''b'' and non-zero ''c'': In other words, the inequality relation is preserved under multiplication and division with positive constant, but is reversed when a negative constant is involved. More generally, this applies for an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
. For more information, see '' § Ordered fields''.


Additive inverse

The property for the
additive inverse In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
states that for any real numbers ''a'' and ''b'':


Multiplicative inverse

If both numbers are positive, then the inequality relation between the
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
s is opposite of that between the original numbers. More specifically, for any non-zero real numbers ''a'' and ''b'' that are both positive (or both negative): All of the cases for the signs of ''a'' and ''b'' can also be written in chained notation, as follows:


Applying a function to both sides

Any monotonically increasing function, by its definition, may be applied to both sides of an inequality without breaking the inequality relation (provided that both expressions are in the domain of that function). However, applying a monotonically decreasing function to both sides of an inequality means the inequality relation would be reversed. The rules for the additive inverse, and the multiplicative inverse for positive numbers, are both examples of applying a monotonically decreasing function. If the inequality is strict (''a'' < ''b'', ''a'' > ''b'') ''and'' the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant inequality is non-strict. In fact, the rules for additive and multiplicative inverses are both examples of applying a ''strictly'' monotonically decreasing function. A few examples of this rule are: * Raising both sides of an inequality to a power ''n'' > 0 (equiv., −''n'' < 0), when ''a'' and ''b'' are positive real numbers: * Taking the
natural logarithm The natural logarithm of a number is its logarithm to the base of a logarithm, base of the e (mathematical constant), mathematical constant , which is an Irrational number, irrational and Transcendental number, transcendental number approxima ...
on both sides of an inequality, when ''a'' and ''b'' are positive real numbers: (this is true because the natural logarithm is a strictly increasing function.)


Formal definitions and generalizations

A (non-strict) partial order is a
binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
≤ over a set ''P'' which is reflexive, antisymmetric, and transitive. That is, for all ''a'', ''b'', and ''c'' in ''P'', it must satisfy the three following clauses: * ''a'' ≤ ''a'' ( reflexivity) * if ''a'' ≤ ''b'' and ''b'' ≤ ''a'', then ''a'' = ''b'' ( antisymmetry) * if ''a'' ≤ ''b'' and ''b'' ≤ ''c'', then ''a'' ≤ ''c'' ( transitivity) A set with a partial order is called a
partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
. Those are the very basic axioms that every kind of order has to satisfy. A strict partial order is a relation < that satisfies * ''a'' ≮ ''a'' ( irreflexivity), * if ''a'' < ''b'', then ''b'' ≮ ''a'' (
asymmetry Asymmetry is the absence of, or a violation of, symmetry (the property of an object being invariant to a transformation, such as reflection). Symmetry is an important property of both physical and abstract systems and it may be displayed in pre ...
), * if ''a'' < ''b'' and ''b'' < ''c'', then ''a'' < ''c'' ( transitivity), where means that does not hold. Some types of partial orders are specified by adding further axioms, such as: *
Total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
: For every ''a'' and ''b'' in ''P'', ''a'' ≤ ''b'' or ''b'' ≤ ''a'' . * Dense order: For all ''a'' and ''b'' in ''P'' for which ''a'' < ''b'', there is a ''c'' in ''P'' such that ''a'' < ''c'' < ''b''. * Least-upper-bound property: Every non-empty
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of ''P'' with an
upper bound In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of . Dually, a lower bound or minorant of is defined to be an element of that is less ...
has a ''least'' upper bound (supremum) in ''P''.


Ordered fields

If (''F'', +, ×) is a field and ≤ is a
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
on ''F'', then (''F'', +, ×, ≤) is called an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
if and only if: * ''a'' ≤ ''b'' implies ''a'' + ''c'' ≤ ''b'' + ''c''; * 0 ≤ ''a'' and 0 ≤ ''b'' implies 0 ≤ ''a'' × ''b''. Both and are
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
s, but cannot be defined in order to make an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
, because −1 is the square of ''i'' and would therefore be positive. Besides being an ordered field, R also has the Least-upper-bound property. In fact, R can be defined as the only ordered field with that quality.


Chained notation

The notation ''a'' < ''b'' < ''c'' stands for "''a'' < ''b'' and ''b'' < ''c''", from which, by the transitivity property above, it also follows that ''a'' < ''c''. By the above laws, one can add or subtract the same number to all three terms, or multiply or divide all three terms by same nonzero number and reverse all inequalities if that number is negative. Hence, for example, ''a'' < ''b'' + ''e'' < ''c'' is equivalent to ''a'' − ''e'' < ''b'' < ''c'' − ''e''. This notation can be generalized to any number of terms: for instance, ''a''1 ≤ ''a''2 ≤ ... ≤ ''a''''n'' means that ''a''''i'' ≤ ''a''''i''+1 for ''i'' = 1, 2, ..., ''n'' − 1. By transitivity, this condition is equivalent to ''a''''i'' ≤ ''a''''j'' for any 1 ≤ ''i'' ≤ ''j'' ≤ ''n''. When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance, to solve the inequality 4''x'' < 2''x'' + 1 ≤ 3''x'' + 2, it is not possible to isolate ''x'' in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding ''x'' < and ''x'' ≥ −1 respectively, which can be combined into the final solution −1 ≤ ''x'' < . Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the
logical conjunction In logic, mathematics and linguistics, ''and'' (\wedge) is the Truth function, truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as \wedge or \& or K (prefix) or ...
of the inequalities between adjacent terms. For example, the defining condition of a zigzag poset is written as ''a''1 < ''a''2 > ''a''3 < ''a''4 > ''a''5 < ''a''6 > ... . Mixed chained notation is used more often with compatible relations, like <, =, ≤. For instance, ''a'' < ''b'' = ''c'' ≤ ''d'' means that ''a'' < ''b'', ''b'' = ''c'', and ''c'' ≤ ''d''. This notation exists in a few
programming language A programming language is a system of notation for writing computer programs. Programming languages are described in terms of their Syntax (programming languages), syntax (form) and semantics (computer science), semantics (meaning), usually def ...
s such as Python. In contrast, in programming languages that provide an ordering on the type of comparison results, such as C, even homogeneous chains may have a completely different meaning.


Sharp inequalities

An inequality is said to be ''sharp'' if it cannot be ''relaxed'' and still be valid in general. Formally, a universally quantified inequality ''φ'' is called sharp if, for every valid universally quantified inequality ''ψ'', if holds, then also holds. For instance, the inequality is sharp, whereas the inequality is not sharp.


Inequalities between means

There are many inequalities between means. For example, for any positive numbers ''a''1, ''a''2, ..., ''a''''n'' we have : H\le G\le A\le Q, where they represent the following means of the sequence: *
Harmonic mean In mathematics, the harmonic mean is a kind of average, one of the Pythagorean means. It is the most appropriate average for ratios and rate (mathematics), rates such as speeds, and is normally only used for positive arguments. The harmonic mean ...
: H = \frac *
Geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a finite collection of positive real numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometri ...
: G = \sqrt *
Arithmetic mean In mathematics and statistics, the arithmetic mean ( ), arithmetic average, or just the ''mean'' or ''average'' is the sum of a collection of numbers divided by the count of numbers in the collection. The collection is often a set of results fr ...
: A = \frac * Quadratic mean : Q = \sqrt


Cauchy–Schwarz inequality

The Cauchy–Schwarz inequality states that for all vectors ''u'' and ''v'' of an inner product space it is true that , \langle \mathbf,\mathbf\rangle, ^2 \leq \langle \mathbf,\mathbf\rangle \cdot \langle \mathbf,\mathbf\rangle, where \langle\cdot,\cdot\rangle is the
inner product In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, ofte ...
. Examples of inner products include the real and complex
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a Scalar (mathematics), scalar as a result". It is also used for other symmetric bilinear forms, for example in a pseudo-Euclidean space. N ...
; In
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
''R''''n'' with the standard inner product, the Cauchy–Schwarz inequality is \biggl(\sum_^n u_i v_i\biggr)^2\leq \biggl(\sum_^n u_i^2\biggr) \biggl(\sum_^n v_i^2\biggr).


Power inequalities

A power inequality is an inequality containing terms of the form ''a''''b'', where ''a'' and ''b'' are real positive numbers or variable expressions. They often appear in mathematical olympiads exercises. Examples: * For any real ''x'', e^x \ge 1+x. * If ''x'' > 0 and ''p'' > 0, then \frac \ge \ln(x) \ge \frac. In the limit of ''p'' → 0, the upper and lower bounds converge to ln(''x''). * If ''x'' > 0, then x^x \ge \left( \frac\right)^\frac. * If ''x'' > 0, then x^ \ge x. * If ''x'', ''y'', ''z'' > 0, then \left(x+y\right)^z + \left(x+z\right)^y + \left(y+z\right)^x > 2. * For any real distinct numbers ''a'' and ''b'', \frac > e^. * If ''x'', ''y'' > 0 and 0 < ''p'' < 1, then x^p+y^p > \left(x+y\right)^p. * If ''x'', ''y'', ''z'' > 0, then x^x y^y z^z \ge \left(xyz\right)^. * If ''a'', ''b'' > 0, then a^a + b^b \ge a^b + b^a. * If ''a'', ''b'' > 0, then a^ + b^ \ge a^ + b^. * If ''a'', ''b'', ''c'' > 0, then a^ + b^ + c^ \ge a^ + b^ + c^. * If ''a'', ''b'' > 0, then a^b + b^a > 1.


Well-known inequalities

Mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
s often use inequalities to bound quantities for which exact formulas cannot be computed easily. Some inequalities are used so often that they have names: * Azuma's inequality * Bernoulli's inequality * Bell's inequality * Boole's inequality *
Cauchy–Schwarz inequality The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) is an upper bound on the absolute value of the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is ...
* Chebyshev's inequality * Chernoff's inequality * Cramér–Rao inequality * Hoeffding's inequality *
Hölder's inequality In mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality (mathematics), inequality between Lebesgue integration, integrals and an indispensable tool for the study of Lp space, spaces. The numbers an ...
*
Inequality of arithmetic and geometric means Inequality may refer to: * Inequality (mathematics), a relation between two quantities when they are different. * Economic inequality, difference in economic well-being between population groups ** Income inequality, an unequal distribution of in ...
* Jensen's inequality * Kolmogorov's inequality * Markov's inequality * Minkowski inequality * Nesbitt's inequality * Pedoe's inequality * Poincaré inequality * Samuelson's inequality * Sobolev inequality *
Triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of Degeneracy (mathematics)#T ...


Complex numbers and inequalities

The set of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s \mathbb with its operations of
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
is a field, but it is impossible to define any relation so that (\Complex, +, \times, \leq) becomes an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
. To make (\mathbb, +, \times, \leq) an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
, it would have to satisfy the following two properties: * if , then ; * if and , then . Because ≤ is a
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
, for any number ''a'', either or (in which case the first property above implies that ). In either case ; this means that and ; so and , which means (−1 + 1) > 0; contradiction. However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if , then "). Sometimes the
lexicographical order In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a ...
definition is used: * , if ** , or ** and It can easily be proven that for this definition implies .


Systems of inequalities

Systems of linear inequalities can be simplified by Fourier–Motzkin elimination. The cylindrical algebraic decomposition is an algorithm that allows testing whether a system of polynomial equations and inequalities has solutions, and, if solutions exist, describing them. The complexity of this algorithm is doubly exponential in the number of variables. It is an active research domain to design algorithms that are more efficient in specific cases.


See also

*
Binary relation In mathematics, a binary relation associates some elements of one Set (mathematics), set called the ''domain'' with some elements of another set called the ''codomain''. Precisely, a binary relation over sets X and Y is a set of ordered pairs ...
* Bracket (mathematics), for the use of similar ‹ and › signs as
bracket A bracket is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. They come in four main pairs of shapes, as given in the box to the right, which also gives their n ...
s * Inclusion (set theory) * Inequation *
Interval (mathematics) In mathematics, a real interval is the set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without a bound. A real ...
* List of inequalities * List of triangle inequalities *
Partially ordered set In mathematics, especially order theory, a partial order on a Set (mathematics), set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements need ...
* Relational operators, used in programming languages to denote inequality


References


Sources

* * * * * * * * * * *


External links

*
Graph of Inequalities
by Ed Pegg, Jr.
AoPS Wiki entry about Inequalities
{{Authority control Elementary algebra Mathematical terminology