HOME

TheInfoList



OR:

In
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude (mathematics), magnitude, mass, and probability of events. These seemingl ...
, a branch of
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Lebesgue measure, named after French mathematician
Henri Lebesgue Henri Léon Lebesgue (; ; June 28, 1875 – July 26, 1941) was a French mathematician known for his Lebesgue integration, theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an ...
, is the standard way of assigning a measure to
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of
higher dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
al Euclidean '-spaces. For lower dimensions or , it coincides with the standard measure of
length Length is a measure of distance. In the International System of Quantities, length is a quantity with Dimension (physical quantity), dimension distance. In most systems of measurement a Base unit (measurement), base unit for length is chosen, ...
,
area Area is the measure of a region's size on a surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an open surface or the boundary of a three-di ...
, or
volume Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch) ...
. In general, it is also called '-dimensional volume, '-volume, hypervolume, or simply volume. It is used throughout
real analysis In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include co ...
, in particular to define
Lebesgue integration In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the axis. The Lebesgue integral, named after French mathematician Henri L ...
. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by \lambda(A). Henri Lebesgue described this measure in the year 1901 which, a year after, was followed up by his description of the Lebesgue integral. Both were published as part of his dissertation in 1902.


Definition

For any interval I = ,b/math>, or I = (a, b), in the set \mathbb of real numbers, let \ell(I)= b - a denote its length. For any subset E\subseteq\mathbb, the Lebesgue
outer measure In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer me ...
\lambda^(E) is defined as an
infimum In mathematics, the infimum (abbreviated inf; : infima) of a subset S of a partially ordered set P is the greatest element in P that is less than or equal to each element of S, if such an element exists. If the infimum of S exists, it is unique ...
\lambda^(E) = \inf \left\. The above definition can be generalised to higher dimensions as follows. For any
rectangular cuboid A rectangular cuboid is a special case of a cuboid with rectangular faces in which all of its dihedral angles are right angles. This shape is also called rectangular parallelepiped or orthogonal parallelepiped. Many writers just call these ...
C which is a
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
C=I_1\times\cdots\times I_n of open intervals, let \operatorname(C)=\ell(I_1)\times\cdots\times \ell(I_n) (a real number product) denote its volume. For any subset E\subseteq\mathbb, \lambda^(E) = \inf \left\. Some sets E satisfy the Carathéodory criterion, which requires that for every A\subseteq \mathbb, \lambda^(A) = \lambda^(A \cap E) + \lambda^(A \cap E^c). Here E^c denotes the complement set. The sets E that satisfy the Carathéodory criterion are said to be Lebesgue-measurable, with its Lebesgue measure being defined as its Lebesgue outer measure: \lambda(E) = \lambda^(E). The set of all such E forms a ''σ''-algebra. A set E that does not satisfy the Carathéodory criterion is not Lebesgue-measurable. ZFC proves that
non-measurable set In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenke ...
s do exist; examples are the
Vitali set In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measure, Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. Each Vitali se ...
s.


Intuition

The first part of the definition states that the subset E of the real numbers is reduced to its outer measure by coverage by sets of open intervals. Each of these sets of intervals I covers E in a sense, since the union of these intervals contains E. The total length of any covering interval set may overestimate the measure of E, because E is a subset of the union of the intervals, and so the intervals may include points which are not in E. The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit E most tightly and do not overlap. That characterizes the Lebesgue outer measure. Whether this outer measure translates to the Lebesgue measure proper depends on an additional condition. This condition is tested by taking subsets A of the real numbers using E as an instrument to split A into two partitions: the part of A which intersects with E and the remaining part of A which is not in E: the set difference of A and E. These partitions of A are subject to the outer measure. If for all possible such subsets A of the real numbers, the partitions of A cut apart by E have outer measures whose sum is the outer measure of A, then the outer Lebesgue measure of E gives its Lebesgue measure. Intuitively, this condition means that the set E must not have some curious properties which causes a discrepancy in the measure of another set when E is used as a "mask" to "clip" that set, hinting at the existence of sets for which the Lebesgue outer measure does not give the Lebesgue measure. (Such sets are, in fact, not Lebesgue-measurable.)


Examples

* Any closed interval
, b The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
/math> of
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
s is Lebesgue-measurable, and its Lebesgue measure is the length b - a. The
open interval In mathematics, a real interval is the set (mathematics), set of all real numbers lying between two fixed endpoints with no "gaps". Each endpoint is either a real number or positive or negative infinity, indicating the interval extends without ...
(a, b) has the same measure, since the
difference Difference commonly refers to: * Difference (philosophy), the set of properties by which items are distinguished * Difference (mathematics), the result of a subtraction Difference, The Difference, Differences or Differently may also refer to: Mu ...
between the two sets consists only of the end points a and b, which each have
measure zero In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has Lebesgue measure, measure zero. This can be characterized as a set that can be Cover (topology), covered by a countable union of Interval (mathematics), ...
. * Any
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of intervals
, b The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
/math> and
, d The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
/math> is Lebesgue-measurable, and its Lebesgue measure is (b - a)(c-d), the area of the corresponding
rectangle In Euclidean geometry, Euclidean plane geometry, a rectangle is a Rectilinear polygon, rectilinear convex polygon or a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that a ...
. * Moreover, every
Borel set In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets ...
is Lebesgue-measurable. However, there are Lebesgue-measurable sets which are not Borel sets. * Any
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
set of real numbers has Lebesgue measure . In particular, the Lebesgue measure of the set of
algebraic numbers In mathematics, an algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is an algebraic number, because it is a ...
is , even though the set is
dense Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be use ...
in \mathbb. * The
Cantor set In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883. Throu ...
and the set of
Liouville number In number theory, a Liouville number is a real number x with the property that, for every positive integer n, there exists a pair of integers (p,q) with q>1 such that :0<\left, x-\frac\<\frac. The inequality implies that Liouville numbers po ...
s are examples of
uncountable set In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger t ...
s that have Lebesgue measure . * If the
axiom of determinacy In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game o ...
holds then all sets of reals are Lebesgue-measurable. Determinacy is however not compatible with the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. *
Vitali set In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measure, Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. Each Vitali se ...
s are examples of sets that are not measurable with respect to the Lebesgue measure. Their existence relies on the
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
. *
Osgood curve In mathematical analysis, an Osgood curve is a non-self-intersecting curve that has positive area. Despite its area, it is not possible for such a curve to cover any Domain (mathematical analysis), two-dimensional region, distinguishing them from ...
s are simple plane
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
s with positive Lebesgue measure (it can be obtained by small variation of the
Peano curve In geometry, the Peano curve is the first example of a space-filling curve to be discovered, by Giuseppe Peano in 1890. Peano's curve is a surjective, continuous function from the unit interval onto the unit square, however it is not injective. ...
construction). The
dragon curve A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems. The dragon curve is probably most commonly thought of as the shape that is generated from repea ...
is another unusual example. * Any line in \mathbb^n, for n \geq 2, has a zero Lebesgue measure. In general, every proper
hyperplane In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is ...
has a zero Lebesgue measure in its
ambient space In mathematics, especially in geometry and topology, an ambient space is the space surrounding a mathematical object along with the object itself. For example, a 1-dimensional line (l) may be studied in isolation —in which case the ambient ...
. * The volume of an '-ball can be calculated in terms of Euler's gamma function.


Properties

The Lebesgue measure on \mathbb^n has the following properties: # If A is a
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
of intervals I_1 \times I_2 \times ... \times I_n, then ''A'' is Lebesgue-measurable and \lambda (A)=, I_1, \cdot , I_2, \cdots , I_n, . # If ''A'' is a union of
countably many In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
pairwise disjoint Lebesgue-measurable sets, then ''A'' is itself Lebesgue-measurable and ''\lambda(A)'' is equal to the sum (or
infinite series In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathemati ...
) of the measures of the involved measurable sets. # If ''A'' is Lebesgue-measurable, then so is its
complement Complement may refer to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-class collections into complementary sets * Complementary color, in the visu ...
. # ''\lambda(A) \geq 0'' for every Lebesgue-measurable set ''A''. # If ''A'' and''B'' are Lebesgue-measurable and ''A'' is a subset of ''B'', then ''\lambda(A) \leq \lambda(B)''. (A consequence of 2.) # Countable unions and intersections of Lebesgue-measurable sets are Lebesgue-measurable. (Not a consequence of 2 and 3, because a family of sets that is closed under complements and disjoint countable unions does not need to be closed under countable unions: \.) # If ''A'' is an
open Open or OPEN may refer to: Music * Open (band), Australian pop/rock band * The Open (band), English indie rock band * ''Open'' (Blues Image album), 1969 * ''Open'' (Gerd Dudek, Buschi Niebergall, and Edward Vesala album), 1979 * ''Open'' (Go ...
or closed subset of \mathbb^n (or even
Borel set In mathematics, a Borel set is any subset of a topological space that can be formed from its open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets ...
, see
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
), then ''A'' is Lebesgue-measurable. # If ''A'' is a Lebesgue-measurable set, then it is "approximately open" and "approximately closed" in the sense of Lebesgue measure. # A Lebesgue-measurable set can be "squeezed" between a containing open set and a contained closed set. This property has been used as an alternative definition of Lebesgue measurability. More precisely, E\subset \mathbb is Lebesgue-measurable if and only if for every \varepsilon>0 there exist an open set G and a closed set F such that F\subset E\subset G and \lambda(G\setminus F)<\varepsilon. # A Lebesgue-measurable set can be "squeezed" between a containing set and a contained . I.e, if ''A'' is Lebesgue-measurable then there exist a set ''G'' and an ''F'' such that ''F \subseteq A \subseteq G'' and ''\lambda(G \setminus A) = \lambda (A \setminus F) = 0''. # Lebesgue measure is both locally finite and
inner regular In mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Definition Let (''X'', ''T'') be a topolo ...
, and so it is a
Radon measure In mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the -algebra of Borel sets of a Hausdorff topological space that is finite on all compact sets, outer regular on all Borel sets, and ...
. # Lebesgue measure is strictly positive on non-empty open sets, and so its
support Support may refer to: Arts, entertainment, and media * Supporting character * Support (art), a solid surface upon which a painting is executed Business and finance * Support (technical analysis) * Child support * Customer support * Income Su ...
is the whole of \mathbb^n. # If ''A'' is a Lebesgue-measurable set with ''\lambda(A) = 0'' ''(a
null set In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notio ...
), ''then every subset of ''A'' is also a null set. ''A fortiori'', every subset of A is measurable. # If ''A'' is Lebesgue-measurable and ''x'' is an element of \mathbb^n, then the ''translation of A'' ''by x'', defined by A + x := \, is also Lebesgue-measurable and has the same measure as ''A''. # If ''A'' is Lebesgue-measurable and \delta>0, then the ''dilation of A by \delta'' defined by \delta A=\ is also Lebesgue-measurable and has measure \delta^\lambda\,(A). # More generally, if ''T'' is a
linear transformation In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
and ''A'' is a measurable subset of \mathbb^n, then ''T(A)'' is also Lebesgue-measurable and has the measure \left, \det(T)\ \lambda(A). All the above may be succinctly summarized as follows (although the last two assertions are non-trivially linked to the following): The Lebesgue measure also has the property of being -finite.


Null sets

A subset of \mathbb^n is a ''null set'' if, for every \varepsilon > 0, it can be covered with countably many products of ''n'' intervals whose total volume is at most \varepsilon. All
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
sets are null sets. If a subset of \mathbb^n has
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line ...
less than ' then it is a null set with respect to '-dimensional Lebesgue measure. Here Hausdorff dimension is relative to the
Euclidean metric In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is oc ...
on \mathbb^n (or any metric Lipschitz equivalent to it). On the other hand, a set may have
topological dimension In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. Informal discussion For ordinary Euclidean ...
less than and have positive '-dimensional Lebesgue measure. An example of this is the
Smith–Volterra–Cantor set In mathematics, the Smith–Volterra–Cantor set (SVC), ε-Cantor set, or fat Cantor set is an example of a set of points on the real line that is nowhere dense (in particular it contains no intervals), yet has positive measure. The Smith–V ...
which has topological dimension 0 yet has positive 1-dimensional Lebesgue measure. In order to show that a given set ''A'' is Lebesgue-measurable, one usually tries to find a "nicer" set ''B'' which differs from ''A'' only by a null set (in the sense that the
symmetric difference In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and ...
''(A \setminus B) \cup (B \setminus A)'' is a null set) and then show that ''B'' can be generated using countable unions and intersections from open or closed sets.


Construction of the Lebesgue measure

The modern construction of the Lebesgue measure is an application of Carathéodory's extension theorem. It proceeds as follows. Fix n \in \mathbb N. A box in \mathbb^n is a set of the formB=\prod_^n _i,b_i\, ,where b_i \geq a_i, and the product symbol here represents a Cartesian product. The volume of this box is defined to be\operatorname(B)=\prod_^n (b_i-a_i) \, .For ''any'' subset ''A'' of \mathbb^n, we can define its
outer measure In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer me ...
\lambda^(A) by:\lambda^*(A) = \inf \left\ .We then define the set ''A'' to be Lebesgue-measurable if for every subset ''S'' of \mathbb^n,\lambda^*(S) = \lambda^*(S \cap A) + \lambda^*(S \setminus A) \, .These Lebesgue-measurable sets form a ''σ''-algebra, and the Lebesgue measure is defined by \lambda(A) = \lambda^(A) for any Lebesgue-measurable set ''A''. The existence of sets that are not Lebesgue-measurable is a consequence of the set-theoretical
axiom of choice In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory. Informally put, the axiom of choice says that given any collection of non-empty sets, it is possible to construct a new set by choosing one element from e ...
, which is independent from many of the conventional systems of axioms for
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
. The Vitali theorem, which follows from the axiom, states that there exist subsets of \mathbb that are not Lebesgue-measurable. Assuming the axiom of choice,
non-measurable set In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenke ...
s with many surprising properties have been demonstrated, such as those of the
Banach–Tarski paradox The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then ...
. In 1970, Robert M. Solovay showed that the existence of sets that are not Lebesgue-measurable is not provable within the framework of
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes suc ...
in the absence of the axiom of choice (see
Solovay's model In the mathematical field of set theory, the Solovay model is a model constructed by in which all of the axioms of Zermelo–Fraenkel set theory (ZF) hold, exclusive of the axiom of choice, but in which all sets of real numbers are Lebesgue meas ...
).


Relation to other measures

The
Borel measure In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. ...
agrees with the Lebesgue measure on those sets for which it is defined; however, there are many more Lebesgue-measurable sets than there are Borel measurable sets. While the Lebesgue measure on \mathbb^n is automatically a locally finite Borel measure, not every locally finite Borel measure on \mathbb^n is necessarily a Lebesgue measure. The Borel measure is translation-invariant, but not
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
. The
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This Measure (mathematics), measure was introduced by Alfr� ...
can be defined on any
locally compact group In mathematics, a locally compact group is a topological group ''G'' for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are lo ...
and is a generalization of the Lebesgue measure (\mathbb^n with addition is a locally compact group). The
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assi ...
is a generalization of the Lebesgue measure that is useful for measuring the subsets of \mathbb^n of lower dimensions than ', like
submanifold In mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S \rightarrow M satisfies certain properties. There are different types of submanifolds depending on exactly ...
s, for example, surfaces or curves in \mathbb^3 and
fractal In mathematics, a fractal is a Shape, geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scale ...
sets. The Hausdorff measure is not to be confused with the notion of
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line ...
. It can be shown that there is no infinite-dimensional analogue of Lebesgue measure.


See also

* 4-volume * Edison Farah *
Lebesgue's density theorem In mathematics, Lebesgue's density theorem states that for any Lebesgue measurable set A\subset \R^n, the "density" of ''A'' is 0 or 1 at almost every point in \R^n. Additionally, the "density" of ''A'' is 1 at almost every point in ''A''. Intu ...
* Lebesgue measure of the set of Liouville numbers *
Non-measurable set In mathematics, a non-measurable set is a set which cannot be assigned a meaningful "volume". The existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In Zermelo–Fraenke ...
**
Vitali set In mathematics, a Vitali set is an elementary example of a set of real numbers that is not Lebesgue measure, Lebesgue measurable, found by Giuseppe Vitali in 1905. The Vitali theorem is the existence theorem that there are such sets. Each Vitali se ...
* Peano–Jordan measure


References

{{Lp spaces Measures (measure theory)