Kutta Condition
   HOME

TheInfoList



OR:

The Kutta condition is a principle in steady-flow
fluid dynamics In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
, especially
aerodynamics Aerodynamics () is the study of the motion of atmosphere of Earth, air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an ...
, that is applicable to solid bodies with sharp corners, such as the
trailing edge The trailing edge of an aerodynamic surface such as a wing is its rear edge, where the airflow separated by the leading edge meets.Crane, Dale: ''Dictionary of Aeronautical Terms, third edition'', page 521. Aviation Supplies & Academics, 1997. ...
s of
airfoil An airfoil (American English) or aerofoil (British English) is a streamlined body that is capable of generating significantly more Lift (force), lift than Drag (physics), drag. Wings, sails and propeller blades are examples of airfoils. Foil (fl ...
s. It is named for German mathematician and aerodynamicist Martin Kutta. Kuethe and Schetzer state the Kutta condition as follows:
A body with a sharp trailing edge which is moving through a fluid will create about itself a circulation of sufficient strength to hold the rear
stagnation point In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero.Clancy, L.J. (1975), ''Aerodynamics'', Pitman Publishing Limited, London. The Bernoulli equation shows that the static pressure is hi ...
at the trailing edge.
In fluid flow around a body with a sharp corner, the Kutta condition refers to the flow pattern in which fluid approaches the corner from above and below, meets at the corner, and then flows away from the body. None of the fluid flows around the sharp corner. The Kutta condition is significant when using the
Kutta–Joukowski theorem The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that th ...
to calculate the lift created by an airfoil with a sharp trailing edge. The value of circulation of the flow around the airfoil must be that value which would cause the Kutta condition to exist.


Explaining airfoils

Applying 2-D
potential flow In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity pre ...
, if an
airfoil An airfoil (American English) or aerofoil (British English) is a streamlined body that is capable of generating significantly more Lift (force), lift than Drag (physics), drag. Wings, sails and propeller blades are examples of airfoils. Foil (fl ...
with a sharp trailing edge begins to move with an angle of attack through air, the two stagnation points are initially located on the underside near the leading edge and on the topside near the trailing edge, just as with the cylinder. As the air passing the underside of the airfoil reaches the trailing edge it must flow around the trailing edge and along the topside of the airfoil toward the stagnation point on the topside of the airfoil.
Vortex In fluid dynamics, a vortex (: vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in th ...
flow occurs at the trailing edge and, because the radius of the sharp trailing edge is zero, the speed of the air around the trailing edge should be infinitely fast. Though real fluids cannot move at infinite speed, they can move very fast. The high airspeed around the trailing edge causes strong
viscous Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
forces to act on the air adjacent to the trailing edge of the airfoil and the result is that a strong vortex accumulates on the topside of the airfoil, near the trailing edge. As the airfoil begins to move it carries this vortex, known as the starting vortex, along with it. Pioneering aerodynamicists were able to photograph starting vortices in liquids to confirm their existence. The
vorticity In continuum mechanics, vorticity is a pseudovector (or axial vector) field that describes the local spinning motion of a continuum near some point (the tendency of something to rotate), as would be seen by an observer located at that point an ...
in the starting vortex is matched by the vorticity in the bound vortex in the airfoil, in accordance with
Kelvin's circulation theorem In fluid mechanics, Kelvin's circulation theorem states:In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve (which encloses the same fluid elements) moving with the fluid remains constant with time. ...
.A.M. Kuethe and J.D. Schetzer (1959) ''Foundations of Aerodynamics'', 2nd edition, John Wiley & Sons As the vorticity in the starting vortex progressively increases the vorticity in the bound vortex also progressively increases and causes the flow over the topside of the airfoil to increase in speed. The starting vortex is soon cast off the airfoil and is left behind, spinning in the air where the airfoil left it. The stagnation point on the topside of the airfoil then moves until it reaches the trailing edge. The starting vortex eventually dissipates due to viscous forces. As the airfoil continues on its way, there is a stagnation point at the trailing edge. The flow over the topside conforms to the upper surface of the airfoil. The flow over both the topside and the underside join up at the trailing edge and leave the airfoil travelling parallel to one another. This is known as the Kutta condition.Clancy, L.J. ''Aerodynamics'', Sections 4.5 and 4.8 When an airfoil is moving with an angle of attack, the starting vortex has been cast off and the Kutta condition has become established, there is a finite circulation of the air around the airfoil. The airfoil is generating lift, and the magnitude of the lift is given by the
Kutta–Joukowski theorem The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that th ...
. One of the consequences of the Kutta condition is that the airflow over the topside of the airfoil travels much faster than the airflow under the underside. A parcel of air which approaches the airfoil along the stagnation streamline is cleaved in two at the stagnation point, one half traveling over the topside and the other half traveling along the underside. The flow over the topside is so much faster than the flow along the underside that these two halves never meet again. They do not even re-join in the wake long after the airfoil has passed. There is a popular fallacy called the equal transit-time fallacy that claims the two halves rejoin at the trailing edge of the airfoil. This has been understood as a fallacy since Martin Kutta's discovery. Whenever the speed or angle of attack of an airfoil changes there is a weak starting vortex which begins to form, either above or below the trailing edge. This weak starting vortex causes the Kutta condition to be re-established for the new speed or angle of attack. As a result, the circulation around the airfoil changes and so too does the lift in response to the changed speed or angle of attack. The Kutta condition gives some insight into why airfoils have sharp trailing edges, even though this is undesirable from structural and manufacturing viewpoints. In irrotational, inviscid, incompressible flow (potential flow) over an
airfoil An airfoil (American English) or aerofoil (British English) is a streamlined body that is capable of generating significantly more Lift (force), lift than Drag (physics), drag. Wings, sails and propeller blades are examples of airfoils. Foil (fl ...
, the Kutta condition can be implemented by calculating the stream function over the airfoil surface. The same Kutta condition implementation method is also used for solving two dimensional subsonic (subcritical) inviscid steady compressible flows over isolated airfoils. The viscous correction for the Kutta condition can be found in some of the recent studies.C. Xu (1998) "Kutta condition for sharp edge flows", ''Mechanics Research Communications ''


In aerodynamics

The Kutta condition allows an aerodynamicist to incorporate a significant effect of
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
while neglecting viscous effects in the underlying
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
equation. It is important in the practical calculation of lift on a
wing A wing is a type of fin that produces both Lift (force), lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform (aeronautics), planform. Wing efficiency is expressed as lift-to-d ...
. The equations of
conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter the mass of the system must remain constant over time. The law implies that mass can neith ...
and
conservation of momentum In Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. ...
applied to an inviscid fluid flow, such as a
potential flow In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity pre ...
, around a solid body result in an infinite number of valid solutions. One way to choose the correct solution would be to apply the viscous equations, in the form of the
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
. However, these normally do not result in a closed-form solution. The Kutta condition is an alternative method of incorporating some aspects of viscous effects, while neglecting others, such as
skin friction Skin friction drag or viscous drag is a type of aerodynamic or hydrodynamic drag, which is resistant force exerted on an object moving in a fluid. Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turb ...
and some other
boundary layer In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
effects. The condition can be expressed in a number of ways. One is that there cannot be an infinite change in velocity at the trailing edge. Although an inviscid fluid can have abrupt changes in velocity, in reality
viscosity Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
smooths out sharp velocity changes. If the trailing edge has a non-zero angle, the flow velocity there must be zero. At a cusped trailing edge, however, the velocity can be non-zero although it must still be identical above and below the airfoil. Another formulation is that the pressure must be continuous at the trailing edge. The Kutta condition does not apply to unsteady flow. Experimental observations show that the
stagnation point In fluid dynamics, a stagnation point is a point in a flow field where the local velocity of the fluid is zero.Clancy, L.J. (1975), ''Aerodynamics'', Pitman Publishing Limited, London. The Bernoulli equation shows that the static pressure is hi ...
(one of two points on the surface of an airfoil where the flow speed is zero) begins on the top surface of an airfoil (assuming positive effective
angle of attack In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a Airfoil#Airfoil terminology, reference line on a body (often the chord (aircraft), chord line of an airfoil) and the vector (geometry), vector representing the relat ...
) as flow accelerates from zero, and moves backwards as the flow accelerates. Once the initial transient effects have died out, the stagnation point is at the trailing edge as required by the Kutta condition. Mathematically, the Kutta condition enforces a specific choice among the infinite allowed values of circulation.


See also

*
Horseshoe vortex The horseshoe vortex model is a simplified representation of the vortex system present in the flow of air around a wing. This vortex system is modelled by the ''bound vortex'' (bound to the wing) and two ''trailing vortices'', therefore having ...


References

* L. J. Clancy (1975) ''Aerodynamics'', Pitman Publishing Limited, London.
"Flow around an airfoil" at the University of Geneva
* * A.M. Kuethe and J.D. Schetzer, ''Foundations of Aerodynamics'', John Wiley & Sons, Inc. New York (1959) * Massey, B.S. ''Mechanics of Fluids''. Section 9.10, 2nd Edition. Van Nostrand Reinhold Co. London (1970) Library of Congress Catalog Card No. 67-25005 * C. Xu, "Kutta condition for sharp edge flows", Mechanics Research Communications 25(4):415-420 (1998). * E.L. Houghton and P.W. Carpenter, ''Aerodynamics for Engineering Students'', 5th edition, pp. 160–162, Butterworth-Heinemann, An imprint of Elsevier Science, Jordan Hill, Oxford (2003)


Notes

{{reflist Fluid dynamics Aircraft aerodynamics