Knowledge Space
   HOME

TheInfoList



OR:

In
mathematical psychology Mathematical psychology is an approach to psychology, psychological research that is based on mathematical modeling of perceptual, thought, Cognition, cognitive and motor processes, and on the establishment of law-like rules that relate quantifi ...
and
education theory Education sciences, also known as education studies or education theory, and traditionally called ''pedagogy'', seek to describe, understand, and prescribe education including education policy. Subfields include comparative education, education ...
, a knowledge space is a
combinatorial Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
used to formulate
mathematical model A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
s describing the progression of a human
learner Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kin ...
. Knowledge spaces were introduced in 1985 by Jean-Paul Doignon and Jean-Claude Falmagne, and remain in extensive use in the education theory. Modern applications include two computerized tutoring systems,
ALEKS ALEKS (Assessment and Learning in Knowledge Spaces) is an online tutoring and assessment program that includes course material in mathematics, chemistry, introductory statistics, and business. Rather than being based on numerical test scores ...
and the defunct RATH. Formally, a knowledge space assumes that a domain of knowledge is a
collection Collection or Collections may refer to: Computing * Collection (abstract data type), the abstract concept of collections in computer science * Collection (linking), the act of linkage editing in computing * Garbage collection (computing), autom ...
of concepts or skills, each of which must be eventually
mastered Mastering is a form of audio post production which is the process of preparing and transferring recorded audio from a source containing the final mix to a data storage device called a master recording, the source from which all copies will be ...
. Not all concepts are interchangeable; some require other concepts as prerequisites. Conversely, competency at one skill may ease the acquisition of another through similarity. A knowledge space marks out which collections of skills are ''feasible'': they can be learned without mastering any other skills. Under reasonable assumptions, the collection of feasible competencies forms the mathematical structure known as an
antimatroid In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids ...
. Researchers and educators usually explore the structure of a discipline's knowledge space as a
latent class model In statistics, a latent class model (LCM) is a model for clustering multivariate discrete data. It assumes that the data arise from a mixture of discrete distributions, within each of which the variables are independent. It is called a latent class ...
.


Motivation

Knowledge Space Theory attempts to address shortcomings of
standardized test A standardized test is a Test (assessment), test that is administered and scored in a consistent or standard manner. Standardized tests are designed in such a way that the questions and interpretations are consistent and are administered and scored ...
ing when used in educational psychometry. Common tests, such as the
SAT The SAT ( ) is a standardized test widely used for college admissions in the United States. Since its debut in 1926, its name and Test score, scoring have changed several times. For much of its history, it was called the Scholastic Aptitude Test ...
and ACT, compress a student's knowledge into a very small range of ordinal
ranks A rank is a position in a hierarchy. It can be formally recognized—for example, cardinal, chief executive officer, general, professor—or unofficial. People Formal ranks * Academic rank * Corporate title * Diplomatic rank * Hierarchy ...
, in the process effacing the conceptual dependencies between questions. Consequently, the tests cannot distinguish between true understanding and guesses, nor can they identify a student's particular weaknesses, only the general proportion of skills mastered. The goal of knowledge space theory is to provide a language by which
exam An examination (exam or evaluation) or test is an educational assessment intended to measure a test-taker's knowledge, skill, aptitude, physical fitness, or classification in many other topics (e.g., beliefs). A test may be administered verba ...
s can communicate *''What the student can do'' and *''What the student is ready to learn''.


Model structure

Knowledge Space Theory-based models presume that an educational subject can be modeled as a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, is a finite set with five elements. Th ...
of
concept A concept is an abstract idea that serves as a foundation for more concrete principles, thoughts, and beliefs. Concepts play an important role in all aspects of cognition. As such, concepts are studied within such disciplines as linguistics, ...
s, skills, or topics. Each ''feasible state of knowledge'' about is then a
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of ; the set of all such feasible states is . The precise term for the information depends on the extent to which satisfies certain
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s: * A knowledge structure assumes that contains the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
(a student may know nothing about ) and itself (a student may have fully mastered ). * A knowledge space is a knowledge structure that is closed under
set union In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. It is one of the fundamental operations through which sets can be combined and related to each other. A refers to a union of ze ...
: if, for each topic, there is an expert in a
class Class, Classes, or The Class may refer to: Common uses not otherwise categorized * Class (biology), a taxonomic rank * Class (knowledge representation), a collection of individuals or objects * Class (philosophy), an analytical concept used d ...
on that topic, then it is possible, with enough time and effort, for each student in the class to become an expert on all those topics simultaneously. * A quasi-ordinal knowledge space is a knowledge space that is also closed under
set intersection In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is writt ...
: if student knows topics and ; and student knows topics and ; then it is possible for another student to know only topic . * A well-graded knowledge space or learning space is a knowledge space satisfying the following axiom:
If , then there exists such that
In educational terms, any feasible body of knowledge can be learned one concept at a time.


Prerequisite partial order

The more contentful axioms associated with quasi-ordinal and well-graded knowledge spaces each imply that the knowledge space forms a well-understood (and heavily studied) mathematical structure: * A quasi-ordinal knowledge space can be associated with a
distributive lattice In mathematics, a distributive lattice is a lattice (order), lattice in which the operations of join and meet distributivity, distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice o ...
under set union and set intersection. The name "quasi-ordinal" arises from
Birkhoff's representation theorem :''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (disambiguation).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice ...
, which explains that distributive lattices uniquely correspond to partial orders. *A well-graded knowledge space is an
antimatroid In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. Antimatroids ...
, a type of mathematical structure that describes certain problems solvable with a
greedy algorithm A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally ...
. In either case, the mathematical structure implies that
set inclusion In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset ...
defines
partial order In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word ''partial'' is used to indicate that not every pair of elements needs to be comparable ...
on , interpretable as an educational prerequirement: if in this partial order, then must be learned before .


Inner and outer fringe

The prerequisite partial order does not uniquely identify a
curriculum In education, a curriculum (; : curriculums or curricula ) is the totality of student experiences that occur in an educational process. The term often refers specifically to a planned sequence of instruction, or to a view of the student's experi ...
; some concepts may lead to a variety of other possible topics. But the
covering relation In mathematics, especially order theory, the covering relation of a partially ordered set is the binary relation which holds between comparable elements that are immediate neighbours. The covering relation is commonly used to graphically expre ...
associated with the prerequisite partial does control curricular structure: if students know before a lesson and immediately after, then must cover in the partial order. In such a circumstance, the new topics covered between and constitute the outer fringe of ("what the student was ready to learn") and the inner fringe of ("what the student just learned").


Construction of knowledge spaces

In practice, there exist several methods to construct knowledge spaces. The most frequently used method is querying experts. There exist several querying algorithms that allow one or several experts to construct a knowledge space by answering a sequence of simple questions. Another method is to construct the knowledge space by explorative data analysis (for example by
item tree analysis Item tree analysis (ITA) is a data analytical method which allows constructing a hierarchical structure on the items of a questionnaire or test from observed response patterns. Assume that we have a questionnaire with ''m'' items and that subjects ...
) from data. A third method is to derive the knowledge space from an analysis of the problem solving processes in the corresponding domain.


References

{{reflist Cognition Knowledge representation Mathematical psychology