The kappa opacity mechanism is the driving mechanism behind the changes in luminosity of many types of
pulsating variable
A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as e ...
stars. The term Eddington valve has been used for this mechanism, but this is increasingly obsolete.
[
Here, the ]Greek letter
The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BCE. It is derived from the earlier Phoenician alphabet, and was the earliest known alphabetic script to have distinct letters for vowels as ...
kappa
Kappa (uppercase Κ, lowercase κ or cursive ; el, κάππα, ''káppa'') is the 10th letter of the Greek alphabet, representing the voiceless velar plosive sound in Ancient and Modern Greek. In the system of Greek numerals, has a value ...
(κ) is used to indicate the radiative opacity
Opacity or opaque may refer to:
* Impediments to (especially, visible) light:
** Opacities, absorption coefficients
** Opacity (optics), property or degree of blocking the transmission of light
* Metaphors derived from literal optics:
** In lingu ...
at any particular depth of the stellar atmosphere. In a normal star, an increase in compression of the atmosphere causes an increase in temperature and density; this produces a decrease in the opacity of the atmosphere, allowing energy to escape more rapidly. The result is an equilibrium condition where temperature and pressure are maintained in a balance. However, in cases where the opacity increases with temperature, the atmosphere becomes unstable against pulsations.[ If a layer of a stellar atmosphere moves inward, it becomes denser and more opaque, causing heat flow to be checked. In return, this heat increase causes a build-up of pressure that pushes the layer back out again. The result is a cyclic process as the layer repeatedly moves inward and then is forced back out again.][
Stellar non-adiabatic pulsation resulting from the κ–mechanism occurs in regions where hydrogen and helium are partly ionized, or where there are negative hydrogen ions. An example of such a zone is in ]RR Lyrae variable
RR Lyrae variables are periodic variable stars, commonly found in globular clusters. They are used as standard candles to measure (extra) galactic distances, assisting with the cosmic distance ladder. This class is named after the prototype ...
s where the partial second ionization of helium occurs.[ Hydrogen ionization is most likely the cause of pulsation activity in ]Mira variable
Mira variables (named for the prototype star Mira) are a class of pulsating stars characterized by very red colours, pulsation periods longer than 100 days, and amplitudes greater than one magnitude in infrared and 2.5 magnitude at visual wave ...
s, rapidly oscillating Ap stars (roAp) and ZZ Ceti variables. In Beta Cephei variable Beta Cephei variables, also known as Beta Canis Majoris stars, are variable stars that exhibit small rapid variations in their brightness due to pulsations of the stars' surfaces, thought due to the unusual properties of iron at temperatures of 200, ...
s, stellar pulsations occur at a depth where the temperature reaches approximately 200,000 K and there is an abundance of iron. The increase in the opacity of iron at this depth is known as the Z bump, where Z is the astronomical symbol for elements other than hydrogen and helium.[
]
References
Further reading
Princeton lesson on radial pulsation,with kappa and epsilon mechanism
Pulsating Stars: Stars that Breathe, Presentation of Swinburne University of Technology, 2010
*
*
*
* In Fig. 15.8 at p.399 there is a schematic representation of the variations of V magnitude, radial velocity, radius with respect to the minimum radius and effective temperature of a classical Cepheid (δ Ceph) over one period.
{{DEFAULTSORT:Kappa-mechanism
Variable stars