HOME

TheInfoList



OR:

Naturally occurring
neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes i ...
(60Nd) is composed of 5 stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass numbers ...
s, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2%
natural abundance In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomi ...
), and 2 long-lived
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s, 144Nd and 150Nd. In all, 33 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an ato ...
, a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
(t1/2) of 2.29×1015 years) and 150Nd (
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
, t1/2 of 7×1018 years). All of the remaining
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 13 known
meta state A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited states have ...
s with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds). The primary
decay mode Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
s before the most abundant stable isotope, 142Nd, are
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Th ...
and
positron decay Positron emission, beta plus decay, or β+ decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (). Positron emis ...
, and the primary mode after is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For e ...
. The primary
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps (de ...
s before 142Nd are element
praseodymium Praseodymium is a chemical element with the symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered to be one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for i ...
isotopes and the primary products after are element
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of on ...
isotopes.


Neodymium isotopes as fission products

Neodymium is one of the more common
fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
s that results from the splitting of
uranium-233 Uranium-233 (233U or U-233) is a fissile isotope of uranium that is bred from thorium-232 as part of the thorium fuel cycle. Uranium-233 was investigated for use in nuclear weapons and as a reactor fuel. It has been used successfully in exper ...
,
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists ...
,
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main ...
and
plutonium-241 Plutonium-241 (241Pu or Pu-241) is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes (especially 239Pu), 241Pu is fissile, with a neutron absorption cross section about one-third greater than ...
. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in
Gabon Gabon (; ; snq, Ngabu), officially the Gabonese Republic (french: République gabonaise), is a country on the west coast of Central Africa. Located on the equator, it is bordered by Equatorial Guinea to the northwest, Cameroon to the north ...
had produced a
natural nuclear fission reactor A natural nuclear fission reactor is a uranium deposit where self-sustaining nuclear chain reactions occur. The conditions under which a natural nuclear reactor could exist had been predicted in 1956 by Japanese American chemist Paul Kuroda. T ...
some two billion years before present was to compare the neodymium isotopes found in the formation with those found elsewhere on Earth.


List of isotopes

, - , 124Nd , style="text-align:right" , 60 , style="text-align:right" , 64 , 123.95223(64)# , 500# ms , , , 0+ , , , - , 125Nd , style="text-align:right" , 60 , style="text-align:right" , 65 , 124.94888(43)# , 600(150) ms , , , 5/2(+#) , , , - , 126Nd , style="text-align:right" , 60 , style="text-align:right" , 66 , 125.94322(43)# , 1# s 200 ns, β+ , 126Pr , 0+ , , , - , rowspan=2, 127Nd , rowspan=2 style="text-align:right" , 60 , rowspan=2 style="text-align:right" , 67 , rowspan=2, 126.94050(43)# , rowspan=2, 1.8(4) s , β+ , 127Pr , rowspan=2, 5/2+# , rowspan=2, , rowspan=2, , - , β+, p (rare) , 126Ce , - , rowspan=2, 128Nd , rowspan=2 style="text-align:right" , 60 , rowspan=2 style="text-align:right" , 68 , rowspan=2, 127.93539(21)# , rowspan=2, 5# s , β+ , 128Pr , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (rare) , 127Ce , - , rowspan=2, 129Nd , rowspan=2 style="text-align:right" , 60 , rowspan=2 style="text-align:right" , 69 , rowspan=2, 128.93319(22)# , rowspan=2, 4.9(2) s , β+ , 129Pr , rowspan=2, 5/2+# , rowspan=2, , rowspan=2, , - , β+, p (rare) , 128Ce , - , 130Nd , style="text-align:right" , 60 , style="text-align:right" , 70 , 129.92851(3) , 21(3) s , β+ , 130Pr , 0+ , , , - , rowspan=2, 131Nd , rowspan=2 style="text-align:right" , 60 , rowspan=2 style="text-align:right" , 71 , rowspan=2, 130.92725(3) , rowspan=2, 33(3) s , β+ , 131Pr , rowspan=2, (5/2)(+#) , rowspan=2, , rowspan=2, , - , β+, p (rare) , 130Ce , - , 132Nd , style="text-align:right" , 60 , style="text-align:right" , 72 , 131.923321(26) , 1.56(10) min , β+ , 132Pr , 0+ , , , - , 133Nd , style="text-align:right" , 60 , style="text-align:right" , 73 , 132.92235(5) , 70(10) s , β+ , 133Pr , (7/2+) , , , - , style="text-indent:1em" , 133m1Nd , colspan="3" style="text-indent:2em" , 127.97(11) keV , ~70 s , β+ , 133Pr , (1/2)+ , , , - , style="text-indent:1em" , 133m2Nd , colspan="3" style="text-indent:2em" , 176.10(10) keV , ~300 ns , , , (9/2–) , , , - , 134Nd , style="text-align:right" , 60 , style="text-align:right" , 74 , 133.918790(13) , 8.5(15) min , β+ , 134Pr , 0+ , , , - , style="text-indent:1em" , 134mNd , colspan="3" style="text-indent:2em" , 2293.1(4) keV , 410(30) µs , , , (8)– , , , - , 135Nd , style="text-align:right" , 60 , style="text-align:right" , 75 , 134.918181(21) , 12.4(6) min , β+ , 135Pr , 9/2(–) , , , - , style="text-indent:1em" , 135mNd , colspan="3" style="text-indent:2em" , 65.0(2) keV , 5.5(5) min , β+ , 135Pr , (1/2+) , , , - , 136Nd , style="text-align:right" , 60 , style="text-align:right" , 76 , 135.914976(13) , 50.65(33) min , β+ , 136Pr , 0+ , , , - , 137Nd , style="text-align:right" , 60 , style="text-align:right" , 77 , 136.914567(12) , 38.5(15) min , β+ , 137Pr , 1/2+ , , , - , style="text-indent:1em" , 137mNd , colspan="3" style="text-indent:2em" , 519.43(17) keV , 1.60(15) s , IT , 137Nd , (11/2–) , , , - , 138Nd , style="text-align:right" , 60 , style="text-align:right" , 78 , 137.911950(13) , 5.04(9) h , β+ , 138Pr , 0+ , , , - , style="text-indent:1em" , 138mNd , colspan="3" style="text-indent:2em" , 3174.9(4) keV , 410(50) ns , , , (10+) , , , - , 139Nd , style="text-align:right" , 60 , style="text-align:right" , 79 , 138.911978(28) , 29.7(5) min , β+ , 139Pr , 3/2+ , , , - , rowspan=2 style="text-indent:1em" , 139m1Nd , rowspan=2 colspan="3" style="text-indent:2em" , 231.15(5) keV , rowspan=2, 5.50(20) h , β+ (88.2%) , 139Pr , rowspan=2, 11/2– , rowspan=2, , rowspan=2, , - , IT (11.8%) , 139Nd , - , style="text-indent:1em" , 139m2Nd , colspan="3" style="text-indent:2em" , 2570.9+X keV , ≥141 ns , , , , , , - , 140Nd , style="text-align:right" , 60 , style="text-align:right" , 80 , 139.90955(3) , 3.37(2) d , EC , 140Pr , 0+ , , , - , style="text-indent:1em" , 140mNd , colspan="3" style="text-indent:2em" , 2221.4(1) keV , 600(50) µs , , , 7– , , , - , 141Nd , style="text-align:right" , 60 , style="text-align:right" , 81 , 140.909610(4) , 2.49(3) h , β+ , 141Pr , 3/2+ , , , - , rowspan=2 style="text-indent:1em" , 141mNd , rowspan=2 colspan="3" style="text-indent:2em" , 756.51(5) keV , rowspan=2, 62.0(8) s , IT (99.95%) , 141Nd , rowspan=2, 11/2– , rowspan=2, , rowspan=2, , - , β+ (.05%) , 141Pr , - , 142Nd , style="text-align:right" , 60 , style="text-align:right" , 82 , 141.9077233(25) , colspan=3 align=center, StableTheoretically capable of
Spontaneous fission Spontaneous fission (SF) is a form of radioactive decay that is found only in very heavy chemical elements. The nuclear binding energy of the elements reaches its maximum at an atomic mass number of about 56 (e.g., iron-56); spontaneous breakdow ...
, 0+ , 0.272(5) , 0.2680–0.2730 , - , 143NdFission product , style="text-align:right" , 60 , style="text-align:right" , 83 , 142.9098143(25) , colspan=3 align=center,
Observationally Stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
, 7/2− , 0.122(2) , 0.1212–0.1232 , - , 144Nd Primordial
radionuclide A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
, style="text-align:right" , 60 , style="text-align:right" , 84 , 143.9100873(25) , 2.29(16)×1015 y , α , 140Ce , 0+ , 0.238(3) , 0.2379–0.2397 , - , 145Nd , style="text-align:right" , 60 , style="text-align:right" , 85 , 144.9125736(25) , colspan=3 align=center, Observationally Stable , 7/2− , 0.083(1) , 0.0823–0.0835 , - , 146Nd , style="text-align:right" , 60 , style="text-align:right" , 86 , 145.9131169(25) , colspan=3 align=center, Observationally Stable , 0+ , 0.172(3) , 0.1706–0.1735 , - , 147Nd , style="text-align:right" , 60 , style="text-align:right" , 87 , 146.9161004(25) , 10.98(1) d , β , 147Pm , 5/2− , , , - , 148Nd , style="text-align:right" , 60 , style="text-align:right" , 88 , 147.916893(3) , colspan=3 align=center, Observationally Stable , 0+ , 0.057(1) , 0.0566–0.0578 , - , 149Nd , style="text-align:right" , 60 , style="text-align:right" , 89 , 148.920149(3) , 1.728(1) h , β , 149Pm , 5/2− , , , - , 150Nd , style="text-align:right" , 60 , style="text-align:right" , 90 , 149.920891(3) , 6.7(7)×1018 y , ββ , 150Sm , 0+ , 0.056(2) , 0.0553–0.0569 , - , 151Nd , style="text-align:right" , 60 , style="text-align:right" , 91 , 150.923829(3) , 12.44(7) min , β , 151Pm , 3/2+ , , , - , 152Nd , style="text-align:right" , 60 , style="text-align:right" , 92 , 151.924682(26) , 11.4(2) min , β , 152Pm , 0+ , , , - , 153Nd , style="text-align:right" , 60 , style="text-align:right" , 93 , 152.927698(29) , 31.6(10) s , β , 153Pm , (3/2)− , , , - , 154Nd , style="text-align:right" , 60 , style="text-align:right" , 94 , 153.92948(12) , 25.9(2) s , β , 154Pm , 0+ , , , - , style="text-indent:1em" , 154m1Nd , colspan="3" style="text-indent:2em" , 480(150)# keV , 1.3(5) µs , , , , , , - , style="text-indent:1em" , 154m2Nd , colspan="3" style="text-indent:2em" , 1349(10) keV , >1 µs , , , (5−) , , , - , 155Nd , style="text-align:right" , 60 , style="text-align:right" , 95 , 154.93293(16)# , 8.9(2) s , β , 155Pm , 3/2−# , , , - , 156Nd , style="text-align:right" , 60 , style="text-align:right" , 96 , 155.93502(22) , 5.49(7) s , β , 156Pm , 0+ , , , - , style="text-indent:1em" , 156mNd , colspan="3" style="text-indent:2em" , 1432(5) keV , 135 ns , , , 5− , , , - , 157Nd , style="text-align:right" , 60 , style="text-align:right" , 97 , 156.93903(21)# , 2# s 300 ns, β , 157Pm , 5/2−# , , , - , 158Nd , style="text-align:right" , 60 , style="text-align:right" , 98 , 157.94160(43)# , 700# ms 300 ns, β , 158Pm , 0+ , , , - , 159Nd , style="text-align:right" , 60 , style="text-align:right" , 99 , 158.94609(54)# , 500# ms , β , 159Pm , 7/2+# , , , - , 160Nd , style="text-align:right" , 60 , style="text-align:right" , 100 , 159.94909(64)# , 300# ms , β , 160Pm , 0+ , , , - , 161Nd , style="text-align:right" , 60 , style="text-align:right" , 101 , 160.95388(75)# , 200# ms , β , 161Pm , 1/2−# , ,


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Neodymium
Neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes i ...