HOME

TheInfoList



OR:

In mathematics, an isometry (or congruence, or congruent transformation) is a
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
-preserving transformation between
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
s, usually assumed to be
bijective In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
. The word isometry is derived from the
Ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic pe ...
: ἴσος ''isos'' meaning "equal", and μέτρον ''metron'' meaning "measure".


Introduction

Given a metric space (loosely, a set and a scheme for assigning distances between elements of the set), an isometry is a transformation which maps elements to the same or another metric space such that the distance between the image elements in the new metric space is equal to the distance between the elements in the original metric space. In a two-dimensional or three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
, two geometric figures are congruent if they are related by an isometry; the isometry that relates them is either a rigid motion (translation or rotation), or a composition of a rigid motion and a
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
. Isometries are often used in constructions where one space is embedded in another space. For instance, the completion of a metric space \ M\ involves an isometry from \ M\ into \ M'\ , a
quotient set In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
of the space of
Cauchy sequence In mathematics, a Cauchy sequence (; ), named after Augustin-Louis Cauchy, is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all but a finite numbe ...
s on \ M\ . The original space \ M\ is thus isometrically
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
to a subspace of a
complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
, and it is usually identified with this subspace. Other embedding constructions show that every metric space is isometrically isomorphic to a
closed subset In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a ...
of some
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
and that every complete metric space is isometrically isomorphic to a closed subset of some
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
. An isometric surjective linear operator on a
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
is called a
unitary operator In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating ''on'' a Hilbert space, but the same notion serves to define the co ...
.


Definition

Let \ X\ and \ Y\ be
metric space In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
s with metrics (e.g., distances) \ d_X\ and \ d_Y\ . A map \ f:X \to Y\ is called an isometry or distance preserving if for any \ a, b \in X\ one has :d_X(a,b)=d_Y\!\left(f(a),f(b)\right). An isometry is automatically
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositi ...
; otherwise two distinct points, ''a'' and ''b'', could be mapped to the same point, thereby contradicting the coincidence axiom of the metric ''d''. This proof is similar to the proof that an
order embedding In order theory, a branch of mathematics, an order embedding is a special kind of monotone function, which provides a way to include one partially ordered set into another. Like Galois connections, order embeddings constitute a notion which is s ...
between
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary ...
s is injective. Clearly, every isometry between metric spaces is a topological embedding. A global isometry, isometric isomorphism or congruence mapping is a
bijective In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
isometry. Like any other bijection, a global isometry has a
function inverse In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\ ...
. The inverse of a global isometry is also a global isometry. Two metric spaces ''X'' and ''Y'' are called isometric if there is a bijective isometry from ''X'' to ''Y''. The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of bijective isometries from a metric space to itself forms a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
with respect to
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
, called the
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (i.e. bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the ...
. There is also the weaker notion of ''path isometry'' or ''arcwise isometry'': A path isometry or arcwise isometry is a map which preserves the lengths of curves; such a map is not necessarily an isometry in the distance preserving sense, and it need not necessarily be bijective, or even injective. This term is often abridged to simply ''isometry'', so one should take care to determine from context which type is intended. ;Examples * Any
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
,
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
and
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
is a global isometry on
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
s. See also
Euclidean group In mathematics, a Euclidean group is the group of (Euclidean) isometries of a Euclidean space \mathbb^n; that is, the transformations of that space that preserve the Euclidean distance between any two points (also called Euclidean transformations ...
and . * The map \ x \mapsto , x, \ in \ \mathbb\ is a ''path isometry'' but not a (general) isometry. Note that unlike an isometry, this path isometry does not need to be injective.


Isometries between normed spaces

The following theorem is due to Mazur and Ulam. :Definition: The midpoint of two elements and in a vector space is the vector .


Linear isometry

Given two
normed vector space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length ...
s V and W , a linear isometry is a
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that ...
A : V \to W that preserves the norms: :\, Av\, = \, v\, for all \ v \in V\ . Linear isometries are distance-preserving maps in the above sense. They are global isometries if and only if they are
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element o ...
. In an
inner product space In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often ...
, the above definition reduces to :\langle v, v \rangle = \langle Av, Av \rangle for all v \in V\ , which is equivalent to saying that \ A^\dagger A = \operatorname_V\ . This also implies that isometries preserve inner products, as :\langle A u, A v \rangle = \langle u, A^\dagger A v \rangle = \langle u, v \rangle\ . Linear isometries are not always
unitary operator In functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating ''on'' a Hilbert space, but the same notion serves to define the co ...
s, though, as those require additionally that V = W and A A^\dagger = \operatorname_V\ . By the
Mazur–Ulam theorem In mathematics, the Mazur–Ulam theorem states that if V and W are normed spaces over R and the mapping :f\colon V\to W is a surjective isometry, then f is affine. It was proved by Stanisław Mazur and Stanisław Ulam in response to a questio ...
, any isometry of normed vector spaces over \mathbb is affine. ;Examples * A
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that ...
from \mathbb^n to itself is an isometry (for the
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an alg ...
) if and only if its matrix is
unitary Unitary may refer to: Mathematics * Unitary divisor * Unitary element * Unitary group * Unitary matrix * Unitary morphism * Unitary operator * Unitary transformation * Unitary representation In mathematics, a unitary representation of a grou ...
.


Manifold

An isometry of a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
is any (smooth) mapping of that manifold into itself, or into another manifold that preserves the notion of distance between points. The definition of an isometry requires the notion of a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathe ...
on the manifold; a manifold with a (positive-definite) metric is a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
, one with an indefinite metric is a
pseudo-Riemannian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
. Thus, isometries are studied in
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to point ...
. A local isometry from one (
pseudo The prefix pseudo- (from Greek ψευδής, ''pseudes'', "false") is used to mark something that superficially appears to be (or behaves like) one thing, but is something else. Subject to context, ''pseudo'' may connote coincidence, imitation, ...
-)
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
to another is a map which pulls back the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allow ...
on the second manifold to the metric tensor on the first. When such a map is also a
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two ...
, such a map is called an isometry (or isometric isomorphism), and provides a notion of
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
("sameness") in the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
Rm of Riemannian manifolds.


Definition

Let \ R = (M, g)\ and \ R' = (M', g')\ be two (pseudo-)Riemannian manifolds, and let \ f : R \to R'\ be a diffeomorphism. Then \ f\ is called an isometry (or isometric isomorphism) if :\ g = f^ g', \ where \ f^ g'\ denotes the
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: ...
of the rank (0, 2) metric tensor \ g'\ by \ f\ . Equivalently, in terms of the pushforward \ f_\ , we have that for any two vector fields \ v, w\ on \ M\ (i.e. sections of the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of ...
\ \mathrm M\ ), :\ g(v, w) = g' \left( f_ v, f_ w \right)\ . If \ f\ is a
local diffeomorphism In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below. Formal ...
such that \ g = f^ g'\ , then f is called a local isometry.


Properties

A collection of isometries typically form a group, the
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (i.e. bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the ...
. When the group is a continuous group, the infinitesimal generators of the group are the
Killing vector field In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric tensor, metric. Killing fields are the Lie g ...
s. The Myers–Steenrod theorem states that every isometry between two connected Riemannian manifolds is smooth (differentiable). A second form of this theorem states that the isometry group of a Riemannian manifold is a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addi ...
.
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent space ...
s that have isometries defined at every point are called symmetric spaces.


Generalizations

* Given a positive real number ε, an ε-isometry or almost isometry (also called a Hausdorff approximation) is a map \ f \colon X \to Y\ between metric spaces such that *# for x, x' \in X one has \ , d_Y(f(x),f(x')) - d_X(x,x'), < \varepsilon\ , and *# for any point y \in Y there exists a point \ x \in X with d_Y(y, f(x)) < \varepsilon\ :That is, an -isometry preserves distances to within and leaves no element of the codomain further than away from the image of an element of the domain. Note that -isometries are not assumed to be
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
. * The
restricted isometry property In linear algebra, the restricted isometry property (RIP) characterizes matrices which are nearly orthonormal, at least when operating on sparse vectors. The concept was introduced by Emmanuel Candès and Terence TaoE. J. Candes and T. Tao, "Deco ...
characterizes nearly isometric matrices for sparse vectors. * Quasi-isometry is yet another useful generalization. * One may also define an element in an abstract unital C*-algebra to be an isometry: *:\ a \in \mathfrak\ is an isometry if and only if \ a^* \cdot a = 1\ . :Note that as mentioned in the introduction this is not necessarily a unitary element because one does not in general have that left inverse is a right inverse. * On a pseudo-Euclidean space, the term ''isometry'' means a linear bijection preserving magnitude. See also Quadratic spaces.


See also

*
Beckman–Quarles theorem In geometry, the Beckman–Quarles theorem, named after Frank S. Beckman and Donald A. Quarles Jr., states that if a transformation of the Euclidean plane or a higher-dimensional Euclidean space preserves unit distances, then it preserves all ...
* * The second dual of a Banach space as an isometric isomorphism * Euclidean plane isometry *
Flat (geometry) In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lin ...
*
Homeomorphism group In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important ...
*
Involution Involution may refer to: * Involute, a construction in the differential geometry of curves * '' Agricultural Involution: The Processes of Ecological Change in Indonesia'', a 1963 study of intensification of production through increased labour inpu ...
*
Isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (i.e. bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the ...
* Motion (geometry) * Myers–Steenrod theorem * 3D isometries that leave the origin fixed *
Partial isometry In functional analysis a partial isometry is a linear map between Hilbert spaces such that it is an isometry on the orthogonal complement of its kernel. The orthogonal complement of its kernel is called the initial subspace and its range is call ...
*
Scaling (geometry) In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions. The result of uniform scaling is simil ...
* Semidefinite embedding *
Space group In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it uncha ...
*
Symmetry in mathematics Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. Given a structured obje ...


Footnotes


References


Bibliography

* * * * * * * {{div col end Functions and mappings Metric geometry Symmetry Equivalence (mathematics) Riemannian geometry