HOME

TheInfoList



OR:

In mathematics, the inverse hyperbolic functions are the
inverse function In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X ...
s of the hyperbolic functions. For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding
hyperbolic angle In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic function ...
. The size of the hyperbolic angle is equal to the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an ope ...
of the corresponding
hyperbolic sector A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points and on the rectangular hyperbola , or the corresponding region when this hyperbola is re-scaled and ...
of the hyperbola , or twice the area of the corresponding sector of the unit hyperbola , just as a circular angle is twice the area of the
circular sector A circular sector, also known as circle sector or disk sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, where the smaller area is known as the ''minor sector'' and the large ...
of the unit circle. Some authors have called inverse hyperbolic functions "area functions" to realize the hyperbolic angles. Hyperbolic functions occur in the calculations of angles and distances in
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
. It also occurs in the solutions of many linear
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s (such as the equation defining a
catenary In physics and geometry, a catenary (, ) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, superfici ...
), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, including
electromagnetic theory In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
,
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
, fluid dynamics, and
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
.


Notation

The
ISO 80000-2 ISO 80000 or IEC 80000 is an international standard introducing the International System of Quantities (ISQ). It was developed and promulgated jointly by the International Organization for Standardization (ISO) and the International Electrotech ...
standard abbreviations consist of ar- followed by the abbreviation of the corresponding hyperbolic function (e.g., arsinh, arcosh). The prefix arc- followed by the corresponding hyperbolic function (e.g., arcsinh, arccosh) is also commonly seen, by analogy with the nomenclature for
inverse trigonometric functions In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
. These are misnomers, since the prefix ''arc'' is the abbreviation for ''arcus'', while the prefix ''ar'' stands for ''area''; the hyperbolic functions are not directly related to arcs.As stated by Jan Gullberg, ''Mathematics: From the Birth of Numbers'' (New York: W. W. Norton & Company, 1997), , p. 539:
Another form of notation, , , etc., is a practice to be condemned as these functions have nothing whatever to do with arc, but with area, as is demonstrated by their full Latin names,

arsinh     ''area sinus hyperbolicus''

arcosh     ''area cosinus hyperbolicus, etc.''
As stated by Eberhard Zeidler, Wolfgang Hackbusch and Hans Rudolf Schwarz, translated by Bruce Hunt, '' Oxford Users' Guide to Mathematics'' (Oxford:
Oxford University Press Oxford University Press (OUP) is the university press of the University of Oxford. It is the largest university press in the world, and its printing history dates back to the 1480s. Having been officially granted the legal right to print books ...
, 2004), , Section 0.2.13: "The inverse hyperbolic functions", p. 68: "The Latin names for the inverse hyperbolic functions are area sinus hyperbolicus, area cosinus hyperbolicus, area tangens hyperbolicus and area cotangens hyperbolicus (of ''x''). ..." This aforesaid reference uses the notations arsinh, arcosh, artanh, and arcoth for the respective inverse hyperbolic functions.
As stated by
Ilja N. Bronshtein Ilya Nikolaevich Bronshtein (Russian: , German: , also written as ; born 1903, died 1976) was a Russian applied mathematician and historian of mathematics. Work and life Bronshtein taught at the Moscow State Technical University (MAMI), then t ...
, Konstantin A. Semendyayev, Gerhard Musiol and Heiner Mühlig, '' Handbook of Mathematics'' (Berlin:
Springer-Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 ...
, 5th ed., 2007), , , Section 2.10: "Area Functions", p. 91:
The ''area functions'' are the inverse functions of the hyperbolic functions, i.e., the ''inverse hyperbolic functions''. The functions , , and are strictly monotone, so they have unique inverses without any restriction; the function cosh ''x'' has two monotonic intervals so we can consider two inverse functions. The name ''area'' refers to the fact that the geometric definition of the functions is the area of certain hyperbolic sectors ...
Other authors prefer to use the notation argsinh, argcosh, argtanh, and so on, where the prefix arg is the abbreviation of the Latin ''argumentum''. In computer science, this is often shortened to ''asinh''. The notation , , etc., is also used, despite the fact that care must be taken to avoid misinterpretations of the superscript −1 as a power, as opposed to a shorthand to denote the inverse function (e.g., versus


Definitions in terms of logarithms

Since the hyperbolic functions are rational functions of whose numerator and denominator are of degree at most two, these functions may be solved in terms of , by using the quadratic formula; then, taking the natural logarithm gives the following expressions for the inverse hyperbolic functions. For
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
arguments, the inverse hyperbolic functions, the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
and the logarithm are
multi-valued function In mathematics, a multivalued function, also called multifunction, many-valued function, set-valued function, is similar to a function, but may associate several values to each input. More precisely, a multivalued function from a domain to ...
s, and the equalities of the next subsections may be viewed as equalities of multi-valued functions. For all inverse hyperbolic functions (save the inverse hyperbolic cotangent and the inverse hyperbolic cosecant), the domain of the real function is
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
.


Inverse hyperbolic sine

''Inverse hyperbolic sine'' (a.k.a. ''area hyperbolic sine'') (Latin: ''Area sinus hyperbolicus''): : \operatorname x =\ln \left ( x + \sqrt \right ) The domain is the whole real line.


Inverse hyperbolic cosine

''Inverse hyperbolic cosine'' (a.k.a. ''area hyperbolic cosine'') (Latin: ''Area cosinus hyperbolicus''): : \operatorname x =\ln \left ( x + \sqrt \right ) The domain is the
closed interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
.


Inverse hyperbolic tangent

''Inverse hyperbolic tangent'' (a.k.a. a''rea hyperbolic tangent'') (Latin: ''Area tangens hyperbolicus''): : \operatorname x =\frac12\ln\left(\frac\right) The domain is the open interval .


Inverse hyperbolic cotangent

''Inverse hyperbolic cotangent'' (a.k.a., ''area hyperbolic cotangent'') (Latin: ''Area cotangens hyperbolicus''): : \operatorname x = \frac12\ln\left(\frac\right) The domain is the union of the open intervals and .


Inverse hyperbolic secant

''Inverse hyperbolic secant'' (a.k.a., ''area hyperbolic secant'') (Latin: ''Area secans hyperbolicus''): : \operatorname x = \ln \left( \frac+\sqrt \right) = \ln \left( \frac \right) The domain is the semi-open interval .


Inverse hyperbolic cosecant

''Inverse hyperbolic cosecant'' (a.k.a., ''area hyperbolic cosecant'') (Latin: ''Area cosecans hyperbolicus''): : \operatorname x = \ln \left( \frac + \sqrt \right) The domain is the real line with 0 removed.


Addition formulae

:\operatorname u \pm \operatorname v = \operatorname \left(u \sqrt \pm v \sqrt\right) :\operatorname u \pm \operatorname v = \operatorname \left(u v \pm \sqrt\right) :\operatorname u \pm \operatorname v = \operatorname \left( \frac \right) :\operatorname u \pm \operatorname v = \operatorname \left( \frac \right) :\begin\operatorname u + \operatorname v & = \operatorname \left(u v + \sqrt\right) \\ & = \operatorname \left(v \sqrt + u \sqrt\right) \end


Other identities

: \begin 2\operatornamex&=\operatorname(2x^2-1) &\quad \hboxx\geq 1 \\ 4\operatornamex&=\operatorname(8x^4-8x^2+1) &\quad \hboxx\geq 1 \\ 2\operatornamex&=\operatorname(2x^2+1) &\quad \hboxx\geq 0 \\ 4\operatornamex&=\operatorname(8x^4+8x^2+1) &\quad \hboxx\geq 0 \end : \ln(x) = \operatorname \left( \frac\right) = \operatorname \left( \frac\right) = \operatorname \left( \frac\right)


Composition of hyperbolic and inverse hyperbolic functions

:\begin &\sinh(\operatornamex) = \sqrt \quad \text \quad , x, > 1 \\ &\sinh(\operatornamex) = \frac \quad \text \quad -1 < x < 1 \\ &\cosh(\operatornamex) = \sqrt \\ &\cosh(\operatornamex) = \frac \quad \text \quad -1 < x < 1 \\ &\tanh(\operatornamex) = \frac \\ &\tanh(\operatornamex) = \frac \quad \text \quad , x, > 1 \end


Composition of inverse hyperbolic and trigonometric functions

: \operatorname \left( \tan \alpha \right) = \operatorname \left( \sin \alpha \right) = \ln\left( \frac \right) = \pm \operatorname \left( \frac \right) : \ln \left( \left, \tan \alpha \\right) = -\operatorname \left( \cos 2 \alpha \right)


Conversions

: \ln x = \operatorname \left( \frac\right) = \operatorname \left( \frac\right) = \pm \operatorname \left( \frac\right) : \operatorname x = \operatorname \left( \frac\right) = \pm \operatorname \left( \frac\right) : \operatorname x = \operatorname \left( \frac\right) = \pm \operatorname \left( \sqrt\right) : \operatorname x = \left, \operatorname \left( \sqrt\right) \ = \left, \operatorname \left( \frac \right) \


Derivatives

: \begin \frac \operatorname x & = \frac, \text x\\ \frac \operatorname x & = \frac, \text x>1\\ \frac \operatorname x & = \frac, \text , x, <1\\ \frac \operatorname x & = \frac, \text , x, >1\\ \frac \operatorname x & = \frac, \text x \in (0,1)\\ \frac \operatorname x & = \frac, \text x\text 0\\ \end For an example differentiation: let ''θ'' = arsinh ''x'', so (where sinh2 ''θ'' = (sinh ''θ'')2): :\frac = \frac = \frac = \frac = \frac.


Series expansions

Expansion series can be obtained for the above functions: :\begin\operatorname x & = x - \left( \frac \right) \frac + \left( \frac \right) \frac - \left( \frac \right) \frac \pm\cdots \\ & = \sum_^\infty \left( \frac \right) \frac , \qquad \left, x \ < 1 \end :\begin\operatorname x & = \ln(2x) - \left( \left( \frac \right) \frac + \left( \frac \right) \frac + \left( \frac \right) \frac +\cdots \right) \\ & = \ln(2x) - \sum_^\infty \left( \frac \right) \frac , \qquad \left, x \ > 1 \end :\begin\operatorname x & = x + \frac + \frac + \frac +\cdots \\ & = \sum_^\infty \frac , \qquad \left, x \ < 1 \end :\begin\operatorname x = \operatorname \frac1x & = x^ - \left( \frac \right) \frac + \left( \frac \right) \frac - \left( \frac \right) \frac \pm\cdots \\ & = \sum_^\infty \left( \frac \right) \frac , \qquad \left, x \ > 1 \end :\begin\operatorname x = \operatorname \frac1x & = \ln \frac - \left( \left( \frac \right) \frac + \left( \frac \right) \frac + \left( \frac \right) \frac +\cdots \right) \\ & = \ln \frac - \sum_^\infty \left( \frac \right) \frac , \qquad 0 < x \le 1 \end :\begin\operatorname x = \operatorname \frac1x & = x^ + \frac + \frac + \frac +\cdots \\ & = \sum_^\infty \frac , \qquad \left, x \ > 1 \end Asymptotic expansion for the arsinh ''x'' is given by :\operatorname x = \ln(2x) + \sum\limits_^\infty \frac


Principal values in the complex plane

As functions of a complex variable, inverse hyperbolic functions are
multivalued function In mathematics, a multivalued function, also called multifunction, many-valued function, set-valued function, is similar to a function, but may associate several values to each input. More precisely, a multivalued function from a domain to a ...
s that are analytic, except at a finite number of points. For such a function, it is common to define a principal value, which is a single valued analytic function which coincides with one specific branch of the multivalued function, over a domain consisting of the complex plane in which a finite number of arcs (usually half lines or line segments) have been removed. These arcs are called branch cuts. For specifying the branch, that is, defining which value of the multivalued function is considered at each point, one generally define it at a particular point, and deduce the value everywhere in the domain of definition of the principal value by analytic continuation. When possible, it is better to define the principal value directly—without referring to analytic continuation. For example, for the square root, the principal value is defined as the square root that has a positive
real part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
. This defines a single valued analytic function, which is defined everywhere, except for non-positive real values of the variables (where the two square roots have a zero real part). This principal value of the square root function is denoted \sqrt x in what follows. Similarly, the principal value of the logarithm, denoted \operatorname in what follows, is defined as the value for which the
imaginary part In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
has the smallest absolute value. It is defined everywhere except for non-positive real values of the variable, for which two different values of the logarithm reach the minimum. For all inverse hyperbolic functions, the principal value may be defined in terms of principal values of the square root and the logarithm function. However, in some cases, the formulas of do not give a correct principal value, as giving a domain of definition which is too small and, in one case non-connected.


Principal value of the inverse hyperbolic sine

The principal value of the inverse hyperbolic sine is given by :\operatorname z = \operatorname(z + \sqrt \,)\,. The argument of the square root is a non-positive real number, if and only if belongs to one of the intervals and of the imaginary axis. If the argument of the logarithm is real, then it is positive. Thus this formula defines a principal value for arsinh, with branch cuts and . This is optimal, as the branch cuts must connect the singular points and to the infinity.


Principal value of the inverse hyperbolic cosine

The formula for the inverse hyperbolic cosine given in is not convenient, since similar to the principal values of the logarithm and the square root, the principal value of arcosh would not be defined for imaginary . Thus the square root has to be factorized, leading to :\operatorname z = \operatorname(z + \sqrt \sqrt \,)\,. The principal values of the square roots are both defined, except if belongs to the real interval . If the argument of the logarithm is real, then is real and has the same sign. Thus, the above formula defines a principal value of arcosh outside the real interval , which is thus the unique branch cut.


Principal values of the inverse hyperbolic tangent and cotangent

The formulas given in suggests : \begin \operatorname z &=\frac12\operatorname\left(\frac\right) \\ \operatorname z &= \frac12\operatorname\left(\frac\right) \end for the definition of the principal values of the inverse hyperbolic tangent and cotangent. In these formulas, the argument of the logarithm is real if and only if is real. For artanh, this argument is in the real interval , if belongs either to or to . For arcoth, the argument of the logarithm is in , if and only if belongs to the real interval . Therefore, these formulas define convenient principal values, for which the branch cuts are and for the inverse hyperbolic tangent, and for the inverse hyperbolic cotangent. In view of a better numerical evaluation near the branch cuts, some authors use the following definitions of the principal values, although the second one introduces a
removable singularity In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbour ...
at . The two definitions of \operatorname differ for real values of z with z > 1 . The ones of \operatorname differ for real values of z with z \in [0, 1) . : \begin \operatorname z &= \tfrac12\operatorname\left(\right) - \tfrac12\operatorname\left(\right) \\ \operatorname z &= \tfrac12\operatorname\left(\right) - \tfrac12\operatorname\left(\right) \end


Principal value of the inverse hyperbolic cosecant

For the inverse hyperbolic cosecant, the principal value is defined as :\operatorname z = \operatorname\left( \frac + \sqrt \,\right). It is defined when the arguments of the logarithm and the square root are not non-positive real numbers. The principal value of the square root is thus defined outside the interval of the imaginary line. If the argument of the logarithm is real, then is a non-zero real number, and this implies that the argument of the logarithm is positive. Thus, the principal value is defined by the above formula outside the branch cut, consisting of the interval of the imaginary line. For , there is a singular point that is included in the branch cut.


Principal value of the inverse hyperbolic secant

Here, as in the case of the inverse hyperbolic cosine, we have to factorize the square root. This gives the principal value : \operatorname z = \operatorname\left( \frac + \sqrt \, \sqrt \right). If the argument of a square root is real, then is real, and it follows that both principal values of square roots are defined, except if is real and belongs to one of the intervals and . If the argument of the logarithm is real and negative, then is also real and negative. It follows that the principal value of arsech is well defined, by the above formula outside two branch cuts, the real intervals and . For , there is a singular point that is included in one of the branch cuts.


Graphical representation

In the following graphical representation of the principal values of the inverse hyperbolic functions, the branch cuts appear as discontinuities of the color. The fact that the whole branch cuts appear as discontinuities, shows that these principal values may not be extended into analytic functions defined over larger domains. In other words, the above defined branch cuts are minimal.


See also

*Complex logarithm *Hyperbolic secant distribution *
ISO 80000-2 ISO 80000 or IEC 80000 is an international standard introducing the International System of Quantities (ISQ). It was developed and promulgated jointly by the International Organization for Standardization (ISO) and the International Electrotech ...
* List of integrals of inverse hyperbolic functions


References


Bibliography

* Herbert Busemann and Paul J. Kelly (1953) ''Projective Geometry and Projective Metrics'', page 207,
Academic Press Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes referen ...
.


External links

* {{Trigonometric and hyperbolic functions