HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an indicator function or a characteristic function of a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s as a subset of the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s.


Definition

The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The Iverson bracket provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just .


Notation and terminology

The notation \chi_A is also used to denote the characteristic function in convex analysis, which is defined as if using the
reciprocal Reciprocal may refer to: In mathematics * Multiplicative inverse, in mathematics, the number 1/''x'', which multiplied by ''x'' gives the product 1, also known as a ''reciprocal'' * Reciprocal polynomial, a polynomial obtained from another pol ...
of the standard definition of the indicator function. A related concept in
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
is that of a dummy variable. (This must not be confused with "dummy variables" as that term is usually used in mathematics, also called a bound variable.) The term " characteristic function" has an unrelated meaning in classic probability theory. For this reason, traditional probabilists use the term indicator function for the function defined here almost exclusively, while mathematicians in other fields are more likely to use the term ''characteristic function'' to describe the function that indicates membership in a set. In fuzzy logic and modern many-valued logic, predicates are the characteristic functions of a
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon ...
. That is, the strict true/false valuation of the predicate is replaced by a quantity interpreted as the degree of truth.


Basic properties

The ''indicator'' or ''characteristic'' function of a subset of some set maps elements of to the range \. This mapping is
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element o ...
only when is a non-empty
proper subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of . If A \equiv X, then \mathbf_A=1. By a similar argument, if A\equiv\emptyset then \mathbf_A=0. In the following, the dot represents multiplication, 1\cdot1 = 1, 1\cdot0 = 0, etc. "+" and "−" represent addition and subtraction. "\cap " and "\cup " are intersection and union, respectively. If A and B are two subsets of X, then \begin \mathbf_ = \min\ = \mathbf_A \cdot\mathbf_B, \\ \mathbf_ = \max\ = \mathbf_A + \mathbf_B - \mathbf_A \cdot\mathbf_B, \end and the indicator function of the complement of A i.e. A^C is: \mathbf_ = 1-\mathbf_A. More generally, suppose A_1, \dotsc, A_n is a collection of subsets of . For any x \in X: \prod_ ( 1 - \mathbf_(x)) is clearly a product of s and s. This product has the value 1 at precisely those x \in X that belong to none of the sets A_k and is 0 otherwise. That is \prod_ ( 1 - \mathbf_) = \mathbf_ = 1 - \mathbf_. Expanding the product on the left hand side, \mathbf_= 1 - \sum_ (-1)^ \mathbf_ = \sum_ (-1)^ \mathbf_ where , F, is the cardinality of . This is one form of the principle of inclusion-exclusion. As suggested by the previous example, the indicator function is a useful notational device in
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many a ...
. The notation is used in other places as well, for instance in
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
: if is a probability space with probability measure \operatorname and is a measurable set, then \mathbf_A becomes a random variable whose
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
is equal to the probability of : \operatorname(\mathbf_A)= \int_ \mathbf_A(x)\,d\operatorname = \int_ d\operatorname = \operatorname(A). This identity is used in a simple proof of Markov's inequality. In many cases, such as
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
, the inverse of the indicator function may be defined. This is commonly called the generalized Möbius function, as a generalization of the inverse of the indicator function in elementary
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
, the Möbius function. (See paragraph below about the use of the inverse in classical recursion theory.)


Mean, variance and covariance

Given a probability space \textstyle (\Omega, \mathcal F, \operatorname) with A \in \mathcal F, the indicator random variable \mathbf_A \colon \Omega \rightarrow \mathbb is defined by \mathbf_A (\omega) = 1 if \omega \in A, otherwise \mathbf_A (\omega) = 0. ;
Mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ar ...
: \operatorname(\mathbf_A (\omega)) = \operatorname(A) (also called "Fundamental Bridge"). ;
Variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbe ...
: \operatorname(\mathbf_A (\omega)) = \operatorname(A)(1 - \operatorname(A)) ;
Covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the le ...
: \operatorname(\mathbf_A (\omega), \mathbf_B (\omega)) = \operatorname(A \cap B) - \operatorname(A)\operatorname(B)


Characteristic function in recursion theory, Gödel's and Kleene's representing function

Kurt Gödel described the ''representing function'' in his 1934 paper "On undecidable propositions of formal mathematical systems" (the "¬" indicates logical inversion, i.e. "NOT"): Kleene offers up the same definition in the context of the primitive recursive functions as a function of a predicate takes on values if the predicate is true and if the predicate is false. For example, because the product of characteristic functions \phi_1 * \phi_2 * \cdots * \phi_n = 0 whenever any one of the functions equals , it plays the role of logical OR: IF \phi_1 = 0 OR \phi_2 = 0 OR ... OR \phi_n = 0 THEN their product is . What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is when the function is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, the bounded- and unbounded- mu operators and the CASE function.


Characteristic function in fuzzy set theory

In classical mathematics, characteristic functions of sets only take values (members) or (non-members). In '' fuzzy set theory'', characteristic functions are generalized to take value in the real unit interval , or more generally, in some
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
or
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
(usually required to be at least a poset or lattice). Such generalized characteristic functions are more usually called
membership function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\i ...
s, and the corresponding "sets" are called ''fuzzy'' sets. Fuzzy sets model the gradual change in the membership degree seen in many real-world
predicate Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: **Predicate (mathematical logic) **Propositional function **Finitary relation, o ...
s like "tall", "warm", etc.


Derivatives of the indicator function

A particular indicator function is the
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argum ...
H(x) := \mathbf_ The distributional derivative of the Heaviside step function is equal to the Dirac delta function, i.e. \frac=\delta(x) and similarly the distributional derivative of G(x) := \mathbf_ is \frac=-\delta(x) Thus the derivative of the Heaviside step function can be seen as the ''inward normal derivative'' at the ''boundary'' of the domain given by the positive half-line. In higher dimensions, the derivative naturally generalises to the inward normal derivative, while the Heaviside step function naturally generalises to the indicator function of some domain . The surface of will be denoted by . Proceeding, it can be derived that the inward normal derivative of the indicator gives rise to a 'surface delta function', which can be indicated by \delta_S(\mathbf): \delta_S(\mathbf) = -\mathbf_x \cdot \nabla_x\mathbf_ where is the outward normal of the surface . This 'surface delta function' has the following property: -\int_f(\mathbf)\,\mathbf_x\cdot\nabla_x\mathbf_\;d^\mathbf = \oint_\,f(\mathbf)\;d^\mathbf. By setting the function equal to one, it follows that the inward normal derivative of the indicator integrates to the numerical value of the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
.


See also

* Dirac measure * Laplacian of the indicator * Dirac delta * Extension (predicate logic) * Free variables and bound variables *
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argum ...
* Iverson bracket * Kronecker delta, a function that can be viewed as an indicator for the identity relation * Macaulay brackets * Multiset *
Membership function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\i ...
* Simple function * Dummy variable (statistics) * Statistical classification * Zero-one loss function


Notes


References


Sources

* * * * * * * {{refend Measure theory Integral calculus Real analysis Mathematical logic Basic concepts in set theory Probability theory Types of functions