Ice (planetary science)
   HOME

TheInfoList



OR:

Volatiles are the group of
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s and
chemical compound A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element ...
s that can be readily
vaporized Vaporization (or vaporisation) of an element or compound is a phase transition from the liquid phase to vapor. There are two types of vaporization: evaporation and boiling. Evaporation is a surface phenomenon, whereas boiling is a bulk phenom ...
. In contrast with volatiles, elements and compounds that are not readily vaporized are known as
refractory In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, ...
substances. On planet Earth, the term 'volatiles' often refers to the volatile components of
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
. In
astrogeology Planetary geology, alternatively known as astrogeology or exogeology, is a planetary science discipline concerned with the geology of the celestial bodies such as the planets and their moons, asteroids, comets, and meteorites. Although the geo ...
volatiles are investigated in the crust or atmosphere of a planet or moon. Volatiles include
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
,
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
,
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
, sulfur dioxide,
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
and others.


Planetary science

Planetary scientists often classify volatiles with exceptionally low melting points, such as hydrogen and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, as gases (as in
gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
), whereas those volatiles with
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
s above about 100  K (–173 °C, –280 °F) are referred to as ices. The terms "gas" and "ice" in this context can apply to compounds that may be solids, liquids or gases. Thus,
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
and Saturn are gas giants, and
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
and Neptune are
ice giant An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune. In astrophysics and planetary scienc ...
s, even though the vast majority of the "gas" and "ice" in their interiors is a hot, highly dense fluid that gets denser as the center of the planet is approached. Inside of Jupiter's orbit, cometary activity is driven by the sublimation of water ice. Supervolatiles such as CO and CO2 have generated cometary activity as far out as .


Igneous petrology

In
igneous petrology Igneous petrology is the study of igneous rocks—those that are formed from magma. As a branch of geology, igneous petrology is closely related to volcanology, tectonophysics, and petrology in general. The modern study of igneous rocks utilizes a ...
the term more specifically refers to the volatile components of
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
(mostly
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
and carbon dioxide) that affect the appearance and explosivity of
volcanoes A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
. Volatiles in a magma with a high viscosity, generally felsic with a higher silica (SiO2) content, tend to produce eruptions that are explosive. Volatiles in a magma with a low viscosity, generally
mafic A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks incl ...
with a lower silica content, tend to vent and can give rise to a
lava fountain Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or un ...
.


Volatiles in magma

Some
volcanic eruption Several types of volcanic eruptions—during which lava, tephra (ash, lapilli, volcanic bombs and volcanic blocks), and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are oft ...
s are explosive because of the mixing between
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
and
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
reaching the surface, which releases energy suddenly. However, in some cases, the eruption is caused by volatiles dissolved in the magma itself. (2008): Fundamentals of Physical Volcanology. Blackwell Publishing, Malden USA Approaching the surface,
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
decreases and the volatiles come out of solution, creating bubbles that circulate in the liquid. The bubbles become connected together, forming a network. This promotes the fragmentation into small
drops Drop, DROP, drops or DROPS may refer to: * Drop (liquid) or droplet, a small volume of liquid ** Eye drops, saline (sometimes mydriatic) drops used as medication for the eyes * Drop (unit), a unit of measure of volume * Falling (physics), allowi ...
or spray or coagulate clots in
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
. Generally, 95-99% of magma is liquid rock. However, the small percentage of
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
present represents a very large
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
when it expands on reaching
atmospheric pressure Atmospheric pressure, also known as barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as , which is equivalent to 1013.25 millibars, ...
. Gas is thus important in a volcano system because it generates explosive eruptions. Magma in the mantle and lower crust has a high volatile content. Water and
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
are not the only volatiles that
volcanoes A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface. On Earth, volcanoes are most often found where tectonic plates a ...
release; other volatiles include hydrogen sulfide and sulfur dioxide. Sulfur dioxide is common in
basaltic Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% of a ...
and rhyolite rocks. Volcanoes also release a large amount of
hydrogen chloride The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride ga ...
and hydrogen fluoride as volatiles.


Solubility of volatiles

There are three main factors that affect the dispersion of volatiles in magma: confining
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
, composition of magma,
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
of magma. Pressure and composition are the most important parameters. To understand how the magma behaves rising to the surface, the role of ''solubility'' within the magma must be known. An empirical
law Law is a set of rules that are created and are enforceable by social or governmental institutions to regulate behavior,Robertson, ''Crimes against humanity'', 90. with its precise definition a matter of longstanding debate. It has been vario ...
has been used for different magma-volatiles combination. For instance, for water in magma the equation is n=0.1078 P where ''n'' is the amount of dissolved gas as weight percentage (wt%), ''P'' is the pressure in
megapascal The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI), and is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is define ...
(MPa) that acts on the magma. The value changes, for example for water in rhyolite n = 0.4111 P and for the carbon dioxide n = 0.0023 P. These simple equations work if there is only one volatile in a magma. However, in reality, the situation is not so simple because there are often multiple volatiles in a magma. It is a complex chemical interaction between different volatiles. Simplifying, the solubility of water in rhyolite and basalt is function of pressure and depth below the surface in absence of other volatiles. Both basalt and rhyolite lose water with decreasing pressure as the magma rises to the surface. The solubility of water is higher in rhyolite than in basaltic magma. Knowledge of the solubility allows the determination of the maximum amount of water that might be dissolved in relation with pressure. If the magma contains less water than the maximum possible amount, it is ''undersaturated'' in water. Usually insufficient water and carbon dioxide exist in the deep crust and mantle, so magma is often ''undersaturated'' in these conditions. Magma becomes ''saturated'' when it reaches the maximum amount of water that can be dissolved in it. If the magma continues to rise up to the surface and more water is dissolved, it becomes ''supersaturated''. If more water is dissolved in magma, it can be ejected as ''bubbles'' or water vapor. This happens because pressure decreases in the process and velocity increases and the process has to balance also between decrease of solubility and pressure. Making a comparison with the solubility of carbon dioxide in magma, this is considerably less than water and it tends to exsolve at greater depth. In this case water and carbon dioxide are considered independent. What affects the behavior of the magmatic system is the depth at which carbon dioxide and water are released. Low solubility of carbon dioxide means that it starts to release bubbles before reaching the magma chamber. The magma is at this point already supersaturated. The magma enriched in carbon dioxide bubbles, rises up to the roof of the chamber and carbon dioxide tends to leak through cracks into the overlying caldera. Basically, during an eruption the magma loses more carbon dioxide than water, that in the chamber is already supersaturated. Overall, water is the main volatile during an eruption.


Nucleation of bubbles

Bubble nucleation happens when the a volatile becomes saturated. Actually the bubbles are composed of molecules that tend to aggregate spontaneously in a process called homogeneous nucleation. The surface tension acts on the bubbles shrinking the surface and forces them back to the liquid. The nucleation process is greater when the space to fit is irregular and the volatile molecules can ease the effect of surface tension. The nucleation can occur thanks to the presence of solid
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s, which are stored in the magma chamber. They are perfect potential nucleation sites for bubbles. If there is no nucleation in the magma the bubbles formation might appear really late and magma becomes significantly supersaturated. The balance between supersaturation pressure and bubble's radii expressed by this equation: ∆P=2σ/r, where ∆P is 100 MPa and σ is the surface tension. If the nucleation starts later when the magma is very supersaturated, the distance between bubbles becomes smaller. Essentially if the magma rises rapidly to the surface, the system will be more out of equilibrium and supersaturated. When the magma rises there is competition between adding new molecules to the existing ones and creating new ones. The distance between molecules characterizes the efficiency of volatiles to aggregate to the new or existing site. Crystals inside magma can determine how bubbles grow and nucleate.


See also

*
Ice Ice is water frozen into a solid state, typically forming at or below temperatures of 0 degrees Celsius or Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaqu ...


References


External links


Glossary
of planetary astronomy terms

of Costa Rican volcanoes.

Planetary Science Research Discoveries {{meteorites Astrobiology Ice Origins Petrology concepts Planetary geology Prebiotic chemistry Volcanology