In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an irreducible polynomial is, roughly speaking, a
polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
that cannot be
factored into the product of two
non-constant polynomials. The property of irreducibility depends on the nature of the
coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s that are accepted for the possible factors, that is, the
ring to which the
coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s of the polynomial and its possible factors are supposed to belong. For example, the polynomial is a polynomial with
integer
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
coefficients, but, as every integer is also a
real number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as
if it is considered as a polynomial with real coefficients. One says that the polynomial is irreducible over the integers but not over the reals.
Polynomial irreducibility can be considered for polynomials with coefficients in an
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
, and there are two common definitions. Most often, a polynomial over an integral domain is said to be ''irreducible'' if it is not the product of two polynomials that have their coefficients in , and that are not
unit in . Equivalently, for this definition, an irreducible polynomial is an
irreducible element
In algebra, an irreducible element of an integral domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements.
The irreducible elements are the terminal elements of a factor ...
in a ring of polynomials over . If is a field, the two definitions of irreducibility are equivalent. For the second definition, a polynomial is irreducible if it cannot be factored into polynomials with coefficients in the same domain that both have a positive degree. Equivalently, a polynomial is irreducible if it is irreducible over the
field of fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of the integral domain. For example, the polynomial