Intertemporal Elasticity Of Substitution
   HOME

TheInfoList



OR:

In
economics Economics () is a behavioral science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and interac ...
, elasticity of intertemporal substitution (or intertemporal elasticity of substitution, EIS, IES) is a measure of responsiveness of the growth rate of
consumption Consumption may refer to: * Eating *Resource consumption *Tuberculosis, an infectious disease, historically known as consumption * Consumer (food chain), receipt of energy by consuming other organisms * Consumption (economics), the purchasing of n ...
to the
real interest rate The real interest rate is the rate of interest an investor, saver or lender receives (or expects to receive) after allowing for inflation. It can be described more formally by the Fisher equation, which states that the real interest rate is appro ...
. If the real interest rate rises, current consumption may decrease due to increased return on savings; but current consumption may also increase as the household decides to consume more immediately, as it is feeling richer. The net effect on current consumption is the elasticity of intertemporal substitution.


Mathematical definition

There are in general two ways to define the EIS. The first way is to define it abstractly as a function derived from the utility function, then interpret it as an elasticity. The second way is to explicitly derive it as an elasticity. The two ways generally yield the same definition.


Abstract definition

Given a utility function u(c), where c denotes consumption level, the EIS is defined as\sigma(c) = -\fracNotice that this definition is the inverse of
relative risk aversion In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more c ...
. We can define a family of utility functions, which may be understood as inverse CRRA utility:u_\sigma(c) = \begin \frac (c^ - 1) \text \sigma \neq 1\\ \ln c \quad \text\sigma = 1 \end For each \sigma \neq 0, the utility function u_\sigma has constant EIS \sigma. In usual economic applications, there is restriction \sigma > 0, since agents are assumed to not be risk-loving. In the diagram, one can see that as \sigma \to \infty, the utility curve becomes more linear, indicating that the agent does not attempt to smooth consumption over time, similar to how a risk-neutral agent does not prefer gambles with smoother outcomes.


Derived definition

The derivation differs for discrete and continuous time. We will see that for CRRA utility, the two approaches yield the same answer. The below functional forms assume that utility from consumption is time additively separable.


Discrete time

Total lifetime utility is given by :U=\sum_^\beta^u(c_t) In this setting, the gross real interest rate R will be given by the following condition: :Qu'(c_t) = Q\beta Ru'(c_) A quantity of money Q invested today costs Qu'(c_t) units of utility, and so must yield exactly that number of units of utility in the future when saved at the prevailing gross interest rate R=1+r, where r is the net interest rate (if it yielded more, then the agent could make himself better off by saving more). Solving for the gross interest rate, we see that :R = \frac In logs, we have : \ln(R) = \ln(1+r) = -\ln - \ln Since \ln(1+r) \approx r for small r (logs are very close to percentage changes) we have : r \approx -\ln - \ln The elasticity of intertemporal substitution is defined as the percent change in consumption growth per percent increase in the net interest rate: :\frac By substituting in our log equation above, we can see that this definition is equivalent to the elasticity of consumption growth with respect to
marginal utility Marginal utility, in mainstream economics, describes the change in ''utility'' (pleasure or satisfaction resulting from the consumption) of one unit of a good or service. Marginal utility can be positive, negative, or zero. Negative marginal utilit ...
growth: :-\frac Either definition is correct, however, assuming that the agent is optimizing and has time separable utility.


Example

Let utility of consumption in period t be given by :u(c_t)=\frac. Since this utility function belongs to the family of CRRA utility functions we have u'(c_t)=c_t^. Thus, :\ln\left frac\right-\sigma\ln\left frac\right This can be rewritten as :\ln\left frac\right-\frac\ln\left frac\right/math> Hence, applying the above derived formula :-\frac=-\left \frac\right\frac.


Continuous time

Let total lifetime utility be given by U=\int_0^T e^ u(c_t) dt where c_t is shorthand for c(t), u(c(t)) is the utility of consumption in (instant) time t, and \rho is the time discount rate. First define the measure of
relative risk aversion In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more c ...
(this is useful even if the model has no uncertainty or risk) as, :RRA=-\frac\frac=-u''(c_t)\frac then the elasticity of intertemporal substitution is defined as EIS=-\frac=-\frac=\frac=\frac=-\frac If the utility function u(c) is of the CRRA type: u(c)=\frac (with special case of \theta=1 being u(c)=\ln(c)) then the intertemporal elasticity of substitution is given by \frac . In general, a low value of theta (high intertemporal elasticity) means that consumption growth is very sensitive to changes in the real interest rate. For theta equal to 1, the growth rate of consumption responds one for one to changes in the real interest rate. A high theta implies an insensitive consumption growth.


Ramsey Growth model

In the
Ramsey growth model Ramsey may refer to: Companies *Ramsey (retailer), Turkish clothing retailer People * Ramsey (given name), including a list of people with the given name * Ramsey (surname), including a list of people with the surname * Baron de Ramsey, a title ...
, the elasticity of intertemporal substitution determines the speed of adjustment to the
steady state In systems theory, a system or a process is in a steady state if the variables (called state variables) which define the behavior of the system or the process are unchanging in time. In continuous time, this means that for those properties ''p' ...
and the behavior of the saving rate during the transition. If the elasticity is high, then large changes in consumption are not very costly to consumers and, as a result, if the real interest rate is high, they will save a large portion of their income. If the elasticity is low, the
consumption smoothing Consumption smoothing is an economic concept for the practice of optimizing a person's standard of living through an appropriate balance between savings and consumption over time. An optimal consumption rate should be relatively similar at each sta ...
motive is very strong and because of this consumers will save a little and consume a lot if the real interest rate is high.


Estimates

Empirical estimates of the elasticity vary. Part of the difficulty stems from the fact that
microeconomic Microeconomics is a branch of economics that studies the behavior of individuals and firms in making decisions regarding the allocation of scarce resources and the interactions among these individuals and firms. Microeconomics focuses on the ...
studies come to different conclusions than
macroeconomic Macroeconomics is a branch of economics that deals with the performance, structure, behavior, and decision-making of an economy as a whole. This includes regional, national, and global economies. Macroeconomists study topics such as output/ GDP ...
studies, which use aggregate data. A meta-analysis of 169 published studies reports a mean elasticity of 0.5, but also substantial differences across countries.Cross-Country Heterogeneity in Intertemporal Substitution
/ref>


References

{{reflist Consumer theory Elasticity (economics)