Internal Hom
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, specifically in
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
,
hom-set In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Alt ...
s (i.e. sets of
morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...
s between
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ai ...
) give rise to important
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s to the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.


Formal definition

Let ''C'' be a
locally small category In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows asso ...
(i.e. a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
for which hom-classes are actually sets and not
proper class Proper may refer to: Mathematics * Proper map, in topology, a property of continuous function between topological spaces, if inverse images of compact subsets are compact * Proper morphism, in algebraic geometry, an analogue of a proper map f ...
es). For all objects ''A'' and ''B'' in ''C'' we define two functors to the
category of sets In the mathematical field of category theory, the category of sets, denoted by Set, is the category whose objects are sets. The arrows or morphisms between sets ''A'' and ''B'' are the functions from ''A'' to ''B'', and the composition of mor ...
as follows: : The functor Hom(–, ''B'') is also called the ''
functor of points In algebraic geometry, a functor represented by a scheme ''X'' is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme ''S'' is (up to natural bijections, or one-to-one correspondence) the ...
'' of the object ''B''. Note that fixing the first argument of Hom naturally gives rise to a covariant functor and fixing the second argument naturally gives a contravariant functor. This is an artifact of the way in which one must compose the morphisms. The pair of functors Hom(''A'', –) and Hom(–, ''B'') are related in a natural manner. For any pair of morphisms ''f'' : ''B'' → ''B''′ and ''h'' : ''A''′ → ''A'' the following diagram commutes: Both paths send ''g'' : ''A'' → ''B'' to ''f''∘''g''∘''h'' : ''A''′ → ''B''′. The commutativity of the above diagram implies that Hom(–, –) is a
bifunctor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
from ''C'' × ''C'' to Set which is contravariant in the first argument and covariant in the second. Equivalently, we may say that Hom(–, –) is a bifunctor : Hom(–, –) : ''C''op × ''C'' → Set where ''C''op is the
opposite category In category theory, a branch of mathematics, the opposite category or dual category C^ of a given Category (mathematics), category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal ...
to ''C''. The notation Hom''C''(–, –) is sometimes used for Hom(–, –) in order to emphasize the category forming the domain.


Yoneda's lemma

Referring to the above commutative diagram, one observes that every morphism : ''h'' : ''A''′ → ''A'' gives rise to a
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
: Hom(''h'', –) : Hom(''A'', –) → Hom(''A''′, –) and every morphism : ''f'' : ''B'' → ''B''′ gives rise to a natural transformation : Hom(–, ''f'') : Hom(–, ''B'') → Hom(–, ''B''′)
Yoneda's lemma In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a ...
implies that ''every'' natural transformation between Hom functors is of this form. In other words, the Hom functors give rise to a full and faithful embedding of the category ''C'' into the
functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object i ...
Set''C''''op'' (covariant or contravariant depending on which Hom functor is used).


Internal Hom functor

Some categories may possess a functor that behaves like a Hom functor, but takes values in the category ''C'' itself, rather than Set. Such a functor is referred to as the internal Hom functor, and is often written as : \left \ -\right: C^\text \times C \to C to emphasize its product-like nature, or as : \mathop\Rightarrow : C^\text \times C \to C to emphasize its functorial nature, or sometimes merely in lower-case: : \operatorname(-, -) : C^\text \times C \to C . For examples, see
Category of relations In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) ''R'' : ''A'' → ''B'' in this category is a relation between the sets ''A'' and ''B'', so . The composition of two re ...
. Categories that possess an internal Hom functor are referred to as closed categories. One has that : \operatorname(I, \operatorname(-, -)) \simeq \operatorname(-, -), where ''I'' is the
unit object In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and ...
of the closed category. For the case of a
closed monoidal category In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic examp ...
, this extends to the notion of
currying In mathematics and computer science, currying is the technique of translating a function that takes multiple arguments into a sequence of families of functions, each taking a single argument. In the prototypical example, one begins with a functi ...
, namely, that : \operatorname(X, Y \Rightarrow Z) \simeq \operatorname(X\otimes Y, Z) where \otimes is a
bifunctor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
, the internal product functor defining a
monoidal category In mathematics, a monoidal category (or tensor category) is a category (mathematics), category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an Object (cate ...
. The isomorphism is
natural Nature is an inherent character or constitution, particularly of the ecosphere or the universe as a whole. In this general sense nature refers to the laws, elements and phenomena of the physical world, including life. Although humans are part ...
in both ''X'' and ''Z''. In other words, in a closed monoidal category, the internal Hom functor is an
adjoint functor In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are k ...
to the internal product functor. The object Y \Rightarrow Z is called the internal Hom. When \otimes is the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets and , denoted , is the set of all ordered pairs where is an element of and is an element of . In terms of set-builder notation, that is A\times B = \. A table c ...
\times, the object Y \Rightarrow Z is called the
exponential object In mathematics, specifically in category theory, an exponential object or map object is the category theory, categorical generalization of a function space in set theory. Category (mathematics), Categories with all Product (category theory), fini ...
, and is often written as Z^Y. Internal Homs, when chained together, form a language, called the
internal language __NOTOC__ Categorical logic is the branch of mathematics in which tools and concepts from category theory are applied to the study of mathematical logic. It is also notable for its connections to theoretical computer science. In broad terms, cate ...
of the category. The most famous of these are
simply typed lambda calculus The simply typed lambda calculus (), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The ...
, which is the internal language of
Cartesian closed categories In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in ma ...
, and the
linear type system Substructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems can constrain access to system resource ...
, which is the internal language of closed symmetric monoidal categories.


Properties

Note that a functor of the form : Hom(–, ''A'') : ''C''op → Set is a
presheaf In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the d ...
; likewise, Hom(''A'', –) is a copresheaf. A functor ''F'' : ''C'' → Set that is
naturally isomorphic In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
to Hom(''A'', –) for some ''A'' in ''C'' is called a
representable functor In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets an ...
(or representable copresheaf); likewise, a contravariant functor equivalent to Hom(–, ''A'') might be called corepresentable. Note that Hom(–, –) : ''C''op × ''C'' → Set is a
profunctor In category theory, a branch of mathematics, profunctors are a generalization of relations and also of bimodules. Definition A profunctor (also named distributor by the French school and module by the Sydney school) \,\phi from a category C to a ...
, and, specifically, it is the identity profunctor \operatorname_C \colon C \nrightarrow C. The internal hom functor preserves
limits Limit or Limits may refer to: Arts and media * ''Limit'' (manga), a manga by Keiko Suenobu * ''Limit'' (film), a South Korean film * Limit (music), a way to characterize harmony * "Limit" (song), a 2016 single by Luna Sea * "Limits", a 2009 ...
; that is, \operatorname(X, -) \colon C \to C sends limits to limits, while \operatorname(-, X) \colon C^\text \to C sends limits in C^\text, that is
colimit In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a colimit generalizes constructions s ...
s in C, into limits. In a certain sense, this can be taken as the definition of a limit or colimit. The
endofunctor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ma ...
Hom(''E'', –) : Set → Set can be given the structure of a
monad Monad may refer to: Philosophy * Monad (philosophy), a term meaning "unit" **Monism, the concept of "one essence" in the metaphysical and theological theory ** Monad (Gnosticism), the most primal aspect of God in Gnosticism * ''Great Monad'', an ...
; this monad is called the environment (or reader) monad.


Other properties

If A is an
abelian category In mathematics, an abelian category is a category in which morphisms and objects can be added and in which kernels and cokernels exist and have desirable properties. The motivating prototypical example of an abelian category is the category o ...
and ''A'' is an object of A, then HomA(''A'', –) is a covariant left-exact functor from A to the category Ab of
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commu ...
s. It is exact
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
''A'' is projective.Jacobson (2009), p. 149, Prop. 3.9. Let ''R'' be a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
and ''M'' a left ''R''- module. The functor HomR(''M'', –): Mod-''R'' → Ab is
adjoint In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoin ...
to the
tensor product In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of ...
functor – \otimes''R'' ''M'': Ab → Mod-''R''.


See also

*
Ext functor In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic stru ...
*
Functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object i ...
*
Representable functor In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures (i.e. sets an ...


Notes


References

* * * **


External links

* * {{DEFAULTSORT:Hom Functor Functors Binary operations